Skip to main content
Log in

Lie symmetries and CR geometry

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

This paper is divided into three parts. Part I develops a general, new theory (inspired by modern CR geometry) of Lie symmetries of completely integrable pde systems, viewed from their associated submanifolds of solutions. Part II constructs general combinatorial formulas for the prolongations of vector fields to jet spaces. Part III explicitly characterizes the flatness of some systems of the second order. The results presented here are original and were not published elsewhere; most formulas of Parts II and III were verified by means of Maple Release 7.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Arnol'd, Dynamical Systems. I. Ordinary Differential Equations and Smooth Dynamical Systems, Encyclopaedia of Math. Sci., Vol. 1, D. V. Anosov and V. I. Arnol'd (Eds.), Springer-Verlag, Berlin (1988) x+233 pp.

    Google Scholar 

  2. M. Artin, “On the solutions of analytic equations,” Invent. Math., 5 (1968), 277–291.

    Article  MATH  MathSciNet  Google Scholar 

  3. M. S. Baouendi, P. Ebenfelt, and L. P. Rothschild, Real submanifolds in complex space and their mappings, Princeton Mathematical Series, Vol. 47, Princeton University Press, Princeton, NJ (1999), xii+404 pp.

    MATH  Google Scholar 

  4. M. S. Baouendi, H. Jacobowitz, and F. Treves, “On the analyticity of CR mappings,” Ann. of Math., 122, No. 2 (1985), 365–400.

    Article  MathSciNet  Google Scholar 

  5. A. Bellaïche, SubRiemannian Geometry, Progress in Mathematics, Vol. 144, Birkhauser Verlag, Basel/Switzerland (1996), 1–78.

    Google Scholar 

  6. V. K. Beloshapka, “On the dimension of the group of automorphisms of an analytic hypersurface,” Izv. Akad. Nauk SSSR Ser. Mat., 43 (1979), 243–266.

    MATH  MathSciNet  Google Scholar 

  7. V. K. Beloshapka, “Finite-dimensionality of the group of automorphisms of a real-analytic surface, ” Izv. Akad. Nauk SSSR Ser. Mat., 52 (1988), 437–442.

    MATH  Google Scholar 

  8. V. K. Beloshapka, “CR-varieties of the type (1,2) as varieties of 'super-high’ co dimension,” Russian J. Math. Phys., 5 (1997), 399–404.

    MATH  MathSciNet  Google Scholar 

  9. V. K. Beloshapka, “Real submanifolds in complex space: polynomial models, automorphisms, and classification problems,” Uspekhi Mat. Nauk, 57, No. 1 (2002), 3–44.

    MathSciNet  Google Scholar 

  10. V. K. Beloshapka, V. Ezhov, and G. Schmalz, “Canonical Cartan connection and holomorphic invariants of Engel CR manifolds,” arxiv.org/abs/math.CV/0508084.

  11. G. W. Bluman and S. Kumei, Symmetries and Differential Equations, Springer Verlag, Berlin (1989).

    MATH  Google Scholar 

  12. A. Boggess, CR manifolds and the tangential Cauchy-Riemann complex, Stud. in Adv. Math., CRC Press, Boca Raton, FL (1991), xviii+364 pp.

    MATH  Google Scholar 

  13. N. Bourbaki, Groupes at Algèbres de Lie, Ch. 2, Hermann, Paris (1972).

    Google Scholar 

  14. D. Burns (Jr.), S. Shnider, and R. O. Wells (Jr.), “Deformations of strictly pseudoconvex domains,” Invent. Math., 46, No. 3 (1978), 237–253.

    Article  MATH  MathSciNet  Google Scholar 

  15. É. Cartan, “Sur les équations de la gravitation d'Einstein,” J. Math. pures et appl., 1 (1922), 141–203.

    Google Scholar 

  16. É. Cartan, “Sur les variétés à connexion projective,” Bull. Soc. Math. France, 52 (1924), 205–241.

    MATH  MathSciNet  Google Scholar 

  17. É. Cartan, “Sur la géométrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes, I,” Ann. Math. Pura Appl., 11 (1932), 17–90.

    Article  MATH  MathSciNet  Google Scholar 

  18. É. Cartan, “Sur la géométrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes, II,” Ann. Scuola Norm. Sup. Pisa, 1 (1932), 333–354.

    MATH  MathSciNet  Google Scholar 

  19. É. Cartan, Les Problèmes d' Équivalence (Séminaire de Math., 4e année, 1936–1937), Œuvres complètes, II, Gauthier-Villars, Paris (1953), pp. 1311–1334.

    Google Scholar 

  20. S. S. Chern and J. K. Moser, “Real hypersurfaces in complex manifolds,” Acta Math., 133, No. 2 (1974), 219–271.

    Article  MathSciNet  Google Scholar 

  21. S.-S. Chern, “On the projective structure of a real hypersurface in ℂn+1,” Math. Scand., 36 (1975), 74–82.

    MATH  MathSciNet  Google Scholar 

  22. E. M. Chirka, Complex Analytic Sets, Mathematics and Its ASpplications (Soviet Series), vol. 46. Kluwer Academic Publishers Group, Dordrecht (1989), xx+372 pp.

    MATH  Google Scholar 

  23. E. M. Chirka, “An introduction to the geometry of CR manifolds,” Uspekhi Mat. Nauk, 46, No. 1(277) (1991), 81–164, 240.

    MathSciNet  Google Scholar 

  24. G. M. Constantine and T. H. Savits, “A multivariate Faà di Bruno formula with applications, ” Trans. Amer. Math. Soc., 348, No. 2 (1996), 503–520.

    Article  MATH  MathSciNet  Google Scholar 

  25. K. Diederich and J. E. Fornæss, “Proper holomorphic mappings between real-analytic pseudoconvex domains in ℂn,” Math. Ann., 282, No. 4 (1988), 681–700.

    Article  MATH  MathSciNet  Google Scholar 

  26. K. Diederich and S. Pinchuk, “Regularity of continuous CR-maps in arbitrary dimension,” Michigan Math. J., 51 (2003), 111–140. Erratum: ib., No. 3, 667–668.

    Article  MATH  MathSciNet  Google Scholar 

  27. K. Diederich and S. M. Webster, “A reflection principle for degenerate real hypersurfaces,” Duke Math. J., 47, No. 4 (1980), 835–843.

  28. P. Ebenfelt, “Normal forms and biholomorphic equivalences of real hypersurfaces in C3,” Indiana Univ. Math. J., 47 (1998), 311–366.

    Article  MATH  MathSciNet  Google Scholar 

  29. P. Ebenfelt, “Correction to ‘Uniformly Levi degenerate CR manifolds: the 5-dimensional case',” Duke Math. J., 131 (2006), 589–591.

    Article  MATH  MathSciNet  Google Scholar 

  30. F. Engel and S. Lie, Theorie der Transformationsgruppen, I, II, II, Teubner, Leipzig, 1889, 1891, 1893.

    Google Scholar 

  31. V. V. Ezhov, N. G. Kruzhilin, and A. G. Vitushkin, “Continuation of holomorphic mappings along real-analytic hypersurfaces,” in: Contemporary Problems in Mathematics. Mathematical Analysis, Algebra, and Topology. Trudy Steklov Mat. Inst., 167 (1985), pp. 60–95, 276.

    MATH  MathSciNet  Google Scholar 

  32. J. Faran, “Segre families and real hypersurfaces,” Invent. Math., 60, No. 2 (1980), 135–172.

    Article  MATH  MathSciNet  Google Scholar 

  33. H. Federer, Geometric measure theory, Die Grundlehren der Mathematischen Wissenschaften, Bd. 153, Springer Verlag, Berlin-New York (1969), xiv+676 pp.

    MATH  Google Scholar 

  34. M. Fels, “The equivalence problem for systems of second-order ordinary differential equations,” Proc. London Math. Soc., 71, No. 2 (1995), 221–240.

    Article  MATH  MathSciNet  Google Scholar 

  35. G. Fels and W. Kaup, “CR-manifolds of dimension 5: A Lie algebra approach,” J. Reine Angew. Math., arxiv.org/abs/math.DG/050811.

  36. G. Fels and W. Kaup, “Homogeneous Levi degenerate CR-manifolds in dimension 5” (in press).

  37. G. Frobenius, “Über das Pfaffsche Problem,” J. Reine Angew. Math., 82 (1877), 230–315.

    Google Scholar 

  38. R. B. Gardner, The Method of Equivalence and Its Applications, CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 58 (SIAM, Philadelphia, 1989), 127 pp.

    MATH  Google Scholar 

  39. H. Gaussier and J. Merker, “Symmetries of partial differential equations,” J. Korean Math. Soc., 40, No. 3 (2003), 517–561.

    MATH  MathSciNet  Google Scholar 

  40. H. Gaussier and J. Merker, “A new example of uniformly Levi nondegenerate hypersurface in C3, ” Ark. Mat., 41, No. 1 (2003), 85–94.

    Article  MATH  MathSciNet  Google Scholar 

  41. H. Gaussier and J. Merker, “Nonalgebraizable real analytic tubes in ℂn,” Math. Z., 247, No. 2 (2004), 337–383.

    Article  MATH  MathSciNet  Google Scholar 

  42. H. Gaussier and J. Merker, “Erratum to ‘A new example of a uniformly Levi degenerate hypersurface in ℂ3',” (in press).

  43. V. Ya. Gershkovich and A. M. Vershik, Nonholonomic Dynamical Systems. Geometry of Distributions and Variational Problems. Dynamical Systems VII, Encyclopædia of mathematical sciences, vol. 16, V. I. Arnol'd and S. P. Novikov (Eds.), 1–81, Springer-Verlag, Berlin (1994).

    Google Scholar 

  44. W. A. de Graaf, “Classification of solvable Lie algebras,” Experiment. Math., 14, No. 1 (2005), 15–25.

    MATH  MathSciNet  Google Scholar 

  45. C. Grissom, G. Thompson, and G. Wilkens, “Linearization of second order ordinary differential equations via Cartan's equivalence method,” J. Differential Equations, 77, No. 1 (1989), 1–15.

    Article  MATH  MathSciNet  Google Scholar 

  46. D. A. Grossman, “Torsion-free path geometries and integrable second order ode systems,” Selecta Math. (N.S.), 6, No. 4 (2000), 399–442.

    Article  MATH  MathSciNet  Google Scholar 

  47. M. Hachtroudi, “Les espaces d'éléments à connexion projective normale,” in: Actualités Scientifiques et Industrielles, Vol. 565, Paris, Hermann (1937).

  48. P. Hartman, Ordinary Differential Equations. Birkhauser, Boston (1982).

    MATH  Google Scholar 

  49. H. Hauser, “The Hironaka theorem on resolution of singularities (or: A proof we always wanted to understand,” Bull. Amer. Math. Soc., 40, No. 3 (2003), 323–403.

    Article  MATH  MathSciNet  Google Scholar 

  50. M. W. Hirsch, “Differential topology,” in: Graduate Texts in Mathematics, 33, Springer-Verlag, Berlin, 1976, x+222 pp.

    Google Scholar 

  51. L. Hsu and N. Kamran, “Classification of second order ordinary differential equations admitting Lie groups of fibre-preserving point symmetries,” Proc. London Math. Soc., 58, No. 3 (1989), 387–416.

    Article  MATH  MathSciNet  Google Scholar 

  52. N. H. Ibragimov, “Group analysis of ordinary differential equations and the invariance principle in mathematical physics,” Russian Math. Surveys, 47, No. 4 (1992), 89–156.

    Article  MathSciNet  Google Scholar 

  53. N. H. Ibragimov, Elementary Lie Group Analysis and Ordinary Differential Equations, Wiley Series in Mathematical Methods in Practice, 4. John Wiley and Sons, Ltd., Chichester (1999), xviii+347 pp.

    MATH  Google Scholar 

  54. J. A. Ivey and J. M. Landsberg, Cartan for Beginners: Differential Geometry via Moving Frames and Exterior Differential Systems, Graduate Studies in Mathematics, Vol. 61. American Mathematical Society, Providence, RI (2003), xiv+378 pp.

    MATH  Google Scholar 

  55. Jacobowitz, An Introduction to CR Structures, Math. Surv. and Monogr., Vol. 32. Amer. Math. Soc., Providence (1990), x+237 pp.

    MATH  Google Scholar 

  56. S. Ji, “Algebraicity of real analytic hypersurfaces with maximal rank,” Amer. J. Math., 124, No. 6 (2002), 1083–1102.

    Article  MATH  MathSciNet  Google Scholar 

  57. T. de Jong and G. Pfister, Local Analytic Geometry. Basic Theory and Applications, Advanced Lectures in Math., Friedr. Vieweg and Sohn, Braunschweig (2000), xii+382 pp.

    MATH  Google Scholar 

  58. A. W. Knapp, Lie Groups beyond an Introduction, Progress in Mathematics, Vol. 140, Birkhauser, Basel (2004), xviii+812 pp.

    Google Scholar 

  59. S. Kobayashi and K. M. Nomizu, Foundations of Differential Geometry, I, Interscience publishers, John Wiley and Sons, New York (1963), xi+329 pp.

    MATH  Google Scholar 

  60. N. G. Kruzhilin, “Local automorphisms and mappings of smooth strictly pseudoconvex hypersurfaces, ” Izv. Akad. Nauk SSSR. Ser. Mat., 49, No. 3 (1985), 566–591, 672.

    MathSciNet  Google Scholar 

  61. N. G. Kruzhilin, “Description of the local automorphism groups of real hypersurfaces,” in: Proc. Int. Congress of Math., Vols. 1, 2 (Berkeley, Calif., 1986), Amer. Math. Soc., Providence, RI (1987), pp. 749–758.

    Google Scholar 

  62. N. G. Kruzhilin and A. G. Vitushkin, “Description of the automorphism groups of real hypersurfaces in complex space,” in: Investigations in the Theory of the Approximation of Functions, Akad. Nauk SSSR, Bashkir. Filial, Otdel. Fiz. Mat., Ufa (1987), pp. 26–69.

    Google Scholar 

  63. S. Lie, “Theorie der Transformationsgruppen,” Math. Ann., 16 (1880), 441–528.

    Article  MathSciNet  Google Scholar 

  64. S. Lie, “Klassifikation und Integration vo gewöhnlichen Differentialgleichungen zwischen x, y, die eine Gruppe von Transformationen gestaten I–IV,” in: Gesammelte Abhandlungen, Vol. 5, B. G. Teubner, Leipzig (1924), pp. 240–310; 362–427, 432–448.

    Google Scholar 

  65. S. Lie and G. Scheffers, Vorlesungen über continuierliche Gruppen mit Geometrischen und anderen Anwendungen, Nachdruck der Auflage des Jahres 1893. Chelsea Publishing Co., Bronx, New York (1971), xii+810 pp.

    MATH  Google Scholar 

  66. A. V. Loboda, “Local automorphisms of real-analytic hypersurfaces,” Izv. Akad. Nauk SSSR Ser. Mat., 45, No. 3 (1981), 620–645.

    MATH  MathSciNet  Google Scholar 

  67. A. V. Loboda, “Homogeneous strictly pseudoconvex hypersurfaces in ℂ3 with two-dimensional isotropy groups,” Mat. Sb., 192, No. 12 (2001), 3–24.

    MathSciNet  Google Scholar 

  68. A. V. Loboda, “Homogeneous nondegenerate surfaces in ℂ3 with two-dimensional isotropy groups,” Mat. Sb., 192, No. 12 (2001).

    Google Scholar 

  69. A. V. Loboda, “On the determination of a homogeneous strictly pseudoconvex hypersurface from the coefficients of its normal form,” Mat. Zametki, 73, No. 3 (2003), 453–456.

    MathSciNet  Google Scholar 

  70. S. Mardare, “On isometric immersions of a Riemannian space under a weak regularity assumption,” C. R. Acad. Sci. Paris, Sér. I, 337 (2003), 785–790.

    MATH  MathSciNet  Google Scholar 

  71. J. Merker, “On the partial algebraicity of holomorphic mappings between two real algebraic sets in the complex euclidean spaces of different dimensions,” Bull. Soc. Math. France, 129, No. 4 (2001), 547–591.

    MATH  MathSciNet  Google Scholar 

  72. J. Merker, Hand Manuscript I, 212 pp., May–July (2003); Hand Manuscript II, 114 pp., August (2003).

  73. J. Merker, “Explicit differential characterization of the Newtonian free particle system in m ≥ 2 dependent variables,” to appear in Acta Math. Appl.

  74. J. Merker, “On the local geometry of generic submanifolds of ℂn and the analytic reflection principle, I,” J. Math. Sci. (New York), 125, No. 6 (2005), 751–824.

    Article  MATH  MathSciNet  Google Scholar 

  75. J. Merker, “Étude de la régularité analytique de l'application de réflexion CR formelle,” Ann. Fac. Sci. Toulouse, XIV, No. 2 (2005), 215–330.

    MathSciNet  Google Scholar 

  76. J. Merker and E. Porten, Holomorphic Extension of CR Functions, Envelopes of Holomorphy and Removable Singularities (in press).

  77. S. Neut, Implantation et nouvelles applications de la méthode d'équivalence d' Élie Cartan, Thèse, Université Lille 1, October (2003).

  78. P. J. Olver, “Symmetry groups and group invariant solutions of partial differential equations,” J. Diff. Geom., 14 (1979), 497–542.

    MATH  MathSciNet  Google Scholar 

  79. P. J. Olver, Applications of Lie Groups to Differential Equations, Springer Verlag, New York (1986), xxvi+497 pp.

    MATH  Google Scholar 

  80. P. J. Olver, Equivalence, Invariance and Symmetries, Cambridge, Cambridge University Press (1995), xvi+525 pp.

    Google Scholar 

  81. A. L. Onishchik and E. B. Vinberg, Lie Groups and Lie Algebras, III, Encyclopædia of Math. Sci., Vol. 41, Springer Verlag, Berlin, 248 pp.

  82. S. Pinchuk, “On the analytic continuation of holomorphic mappings,” Mat. Sb., 98(140), No. 3 (1975), 375–392, 416–435, 495–496.

    Article  Google Scholar 

  83. S. Pinchuk, “Holomorphic mappings of real-analytic hypersurfaces,” Mat. Sb., 105(147), No. 4 (1978), 574–593, 640.

    MathSciNet  Google Scholar 

  84. C. Reutenauer, Free Lie Algebras, London Math. Soc. Monogr., New Series, Vol. 7. Oxford Science Publications, The Clarendon Press, Oxford University Press, New York (1993), xviii+269 pp.

    MATH  Google Scholar 

  85. B. Segre, “Intorno al problema di Poincaré della rappresentazione pseudoconforme,” Rend. Acc. Lincei, VI, Ser., 13 (1931), 676–683.

    MATH  Google Scholar 

  86. B. Segre, “Questioni geometriche legate colla teoria delle funzioni di due variabili complesse,” Rend. Sem. Mat. Roma. Ser. II, 7 (1932), No. 2, 59–107.

    Google Scholar 

  87. R. W. Sharpe, Differential Geometry; Cartan's Generalization of Klein's Erlangen Program, Graduate Texts in Math., Vol. 166, Springer Verlag, Berlin (1997), xix+421 pp.

    MATH  Google Scholar 

  88. M. Spivak, A Comprehensive Introduction to Differential Geometry, Vols. 1, 2. Published by M. Spivak, Brandeis Univ., Waltham, Mass. (1970).

    Google Scholar 

  89. N. Stanton, “Infinitesimal CR automorphisms of real hypersurfaces,” Amer. J. Math., 118, No. 1 (1996), 209–233.

    Article  MATH  MathSciNet  Google Scholar 

  90. S. Sternberg, Lectures in Differential Geometry, Second edition, Chelsea publishing Co., New York (1983), xviii+442 pp.

    Google Scholar 

  91. O. Stormark, “On the theorem of Frobenius for complex vector fields,” Ann. Scuola Norm. Sup. Pisa Cl. Sci., 9, No. 1 (1982), 57–90.

    MATH  MathSciNet  Google Scholar 

  92. O. Stormark, Lie's Structural Approach to PDE Systems, Encyclopædia Math. Appl., Vol. 80, Cambridge University Press, Cambridge (2000), xv+572 pp.

    MATH  Google Scholar 

  93. A. Sukhov, “Segre varieties and Lie symmetries,” Math. Z., 238, No. 3 (2001), 483–492.

    Article  MATH  MathSciNet  Google Scholar 

  94. A. Sukhov, “CR maps and point Lie transformations,” Michigan Math. J., 50 (2002), 369–379.

    Article  MATH  MathSciNet  Google Scholar 

  95. A. Sukhov, “On transformations of analytic structures,” Izv. Ross. Akad. Nauk Ser. Mat., 67, No. 2 (2003), 101–132.

    MathSciNet  Google Scholar 

  96. H. J. Sussmann, “Orbits of families of vector fields and integrability of distributions,” Trans. Amer. Math. Soc., 180, No. 1 (1973), 171–188.

    Article  MATH  MathSciNet  Google Scholar 

  97. A. Tresse, Détermination des invariants ponctuels de l'équation différentielle du second ordre y″ = ω(x, y, y′), Hirzel, Leipzig (1896).

  98. E. Vessiot, “Sur une théorie nouvelle des problèmes généraux d'intégration,” Bull. Soc. Math. France, 52 (1924), 336–395.

    MATH  MathSciNet  Google Scholar 

  99. A. G. Vitushkin, Holomorphic Mappings and the Geometry of Hypersurfaces, Encyclopædia Math. Sci., Vol. 7, Several Complex Variables, I, Springer-Verlag, Berlin (1990), pp. 159–214.

    Google Scholar 

  100. S. M. Webster, “On the mapping problem for algebraic real hypersurfaces,” Invent. Math., 43, No. 1 (1977), 53–68.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joël Merker.

Additional information

__________

Translated from Sovremennaya Matematika i Ee Prilozheniya (Contemporary Mathematics and Its Applications), Vol. 47, Complex Analysis, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merker, J. Lie symmetries and CR geometry. J Math Sci 154, 817–922 (2008). https://doi.org/10.1007/s10958-008-9201-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-008-9201-5

Keywords

Navigation