Skip to main content
Log in

Semimartingale stochastic approximation procedure and recursive estimation

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

The semimartingale stochastic approximation procedure, precisely, the Robbins-Monro type SDE, is introduced, which naturally includes both generalized stochastic approximation algorithms with martingale noises and recursive parameter estimation procedures for statistical models associated with semimartingales. General results concerning the asymptotic behavior of the solution are presented. In particular, the conditions ensuring the convergence, the rate of convergence, and the asymptotic expansion are established. The results concerning the Polyak weighted averaging procedure are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. E. Albert and L. A. Gardner, Jr., “Stochastic approximations and nonlinear regression,” M.I.T. Press Research Monograph, 42, The M.I.T. Press, Cambridge, (1967).

    Google Scholar 

  2. A. Le Breton, “About the averaging approach in Gaussian schemes for stochastic approximation,” Math. Methods Statist., 2, No. 4, 295–315 (1993).

    MATH  MathSciNet  Google Scholar 

  3. A. Le Breton, “About Gaussian schemes in stochastic approximation,” Stochastic Process. Appl., 50, No. 1, 101–115 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  4. A. Le Breton and A. A. Novikov, “Averaging for estimating covariances in stochastic approximation,” Math. Methods Statist., 3, No. 3, 244–266 (1994).

    MATH  MathSciNet  Google Scholar 

  5. H. F. Chen, “Asymptotically efficient stochastic approximation,” Stochastics Stochastics Rep., 45, Nos. 1–2, 1–16 (1993).

    MATH  MathSciNet  Google Scholar 

  6. B. Delyon and A. Juditsky, “Stochastic optimization with averaging of trajectories,” Stochastics Stochastics Rep., 39, Nos. 2–3, 107–118 (1992).

    MATH  MathSciNet  Google Scholar 

  7. V. Fabian, “On asymptotically efficient recursive estimation,” Ann. Statist., 6, No. 4, 854–866 (1978).

    Article  MATH  MathSciNet  Google Scholar 

  8. L. I. Gal’chuk, “On the existence and uniqueness of solutions of stochastic equations with respect to semimartingales,” Teor. Veroyatn. Primen., 23, No. 4, 782–795 (1978).

    MATH  MathSciNet  Google Scholar 

  9. I. I. Gikhman and A. V. Skorokhod, Stochastic Differential Equations and Their Applications [in Russian], Naukova Dumka, Kiev (1982).

    MATH  Google Scholar 

  10. A. A. Gushchin, “Asymptotic optimality of parameter estimators under the LAQ condition,” Teor. Veroyatn. Primen., 40, No. 2, 286–300 (1995). (1996).

    MATH  MathSciNet  Google Scholar 

  11. P. Hall and C. C. Heyde, “Martingale limit theory and its application,” in: Probability and Mathematical Statistics, Academic Press, New York-London (1980).

    Google Scholar 

  12. J. Jacod, “Calcul stochastique et problèmes de martingales,” Lect. Notes Math., 714 (1979).

  13. J. Jacod and J. Mémin, “Weak and strong solutions of stochastic differential equations: existence and stability,” Lect. Notes Math., 851 (1981).

  14. J. Jacod and A. N. Shiryaev, “Limit theorems for stochastic processes,” Grundlehren Math. Wiss., 288 (1987).

  15. J. Jacod, “Regularity, partial regularity, partial information process for a filtered statistical model,” Probab. Theory Related Fields, 86, No. 3, 305–335 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  16. Yu. M. Kabanov, R. Sh. Litscer, and A. N. Shiryaev, “Absolute continuity and singularity of locally absolutely continuous probability distributions, I,” Mat. Sb., 107, No. 3, 364–415 (1978).

    MathSciNet  Google Scholar 

  17. H. J. Kushner and G. G. Yin, “Stochastic approximation algorithms and applications,” Appl. Math., 35 (1997).

  18. N. L. Lazrieva and T. A. Toronjadze, “Ito-Ventzel’s formula for semimartingales, asymptotic properties of MLE and recursive estimation,” Lect. Notes Control Inf. Sci., 96 (1987), pp. 346–355.

    Article  Google Scholar 

  19. N. Lazrieva, T. Sharia, and T. Toronjadze, “The Robbins-Monro type stochastic differential equations, I. Convergence of solutions,” Stochastics Stochastics Rep., 61, Nos. 1–2, 67–87 (1997).

    MATH  MathSciNet  Google Scholar 

  20. N. Lazrieva, T. Sharia, and T. Toronjadze, “The Robbins-Monro type stochastic differential equations, II. Asymptotic behavior of solutions,” Stochastics Stochastics Rep., 75, No. 3, 153–180 (2003).

    Article  MathSciNet  Google Scholar 

  21. N. Lazrieva and T. Toronjadze, “The Polyak weighted averaging procedure for Robbins-Monro type SDE,” Proc. Razmadze Math. Inst., 124, 115–130 (2000).

    MATH  MathSciNet  Google Scholar 

  22. E. Lenglart, “Sur la convergence presque sure des martingales locales,” C. R. Acad. Sci. Paris Sér. A–B, 284, No. 17, A1085–A1088 (1977).

    MathSciNet  Google Scholar 

  23. D. Levanony, A. Shwartz, and O. Zeitouni, “Recursive identification in continuous-time stochastic processes,” Stochastic Process. Appl., 49, No. 2, 245–275 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  24. R. Sh. Liptser, “A strong law of large numbers for local martingales,” Stochastics, 3, No. 3, 217–228 (1980).

    MATH  MathSciNet  Google Scholar 

  25. R. Sh. Liptser and A. N. Shiryaev, Martingale Theory [in Russian], Nauka, Moscow (1986).

    MATH  Google Scholar 

  26. L. Ljung, G. Pflug, and H. Walk, “Stochastic approximation and optimization of random systems,” in: DMV Seminar, 17, Birkhäuser (1992).

  27. L. Ljung, “Recursive least-squares and accelerated convergence in stochastic approximation schemes,” Int. J. Adapt. Control Signal Process., 15, No. 2, 169–178 (2001).

    Article  MATH  Google Scholar 

  28. A. V. Melnikov, “Stochastic approximation procedures for semimartingales,” in: Statistics and Control of Random Processes [in Russian], Nauka, Moscow (1989), pp. 147–156.

    Google Scholar 

  29. A. V. Melnikov and A. E. Rodkina, “Martingale approach to the procedures of stochastic approximation,” in: Proc. Third Finnish-Soviet Symp. on Probability Theory and Mathematical Statistics, Turku, Finland, August 13–16, 1991, VSP. Front. Pure Appl. Probab., 1, Utrecht (1993), pp. 165–182.

  30. A. V. Melnikov, A. E. Rodkina, and E. Valkeila, “On a general class of stochastic approximation algorithms,” in: Proc. Third Finnish-Soviet Symp. on Probability Theory and Mathematical Statistics, Turku, Finland, August 13–16, 1991, VSP. Front. Pure Appl. Probab., 1, Utrecht (1993), pp. 183–196.

  31. A. V. Melnikov and E. Valkeila, “Martingale models of stochastic approximation and their convergence,” Teor. Veroyatn. Primen., 44, No. 2, 278–311 (1999).

    MathSciNet  Google Scholar 

  32. M. B. Nevelson and R. Z. Khas’minski, “Stochastic approximation and recurrent estimation,” in: Monogr. Probability Theory and Mathematical Statistics [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  33. B. T. Polyak, “A new method of stochastic approximation type,” Avtomat. Telemekh., 7, 98–107 (1990).

    MathSciNet  Google Scholar 

  34. B. T. Polyak and A. B. Juditsky, “Acceleration of stochastic approximation by averaging,” SIAM J. Control Optim., 30, No. 4, 838–855 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  35. B. L. S. Prakasa Rao, “Semimartingales and their statistical inference,” in: Monogr. on Statistics and Applied Probability, 83 (1999).

  36. H. Robbins and S. Monro, “A stochastic approximation method,” Ann. Math. Statistics, 22, 400–407 (1951).

    Article  MATH  MathSciNet  Google Scholar 

  37. H. Robbins and D. Siegmund, “A convergence theorem for nonnegative almost supermartingales and some applications,” in: Optimizing Methods in Statistics. Proc. Sympos., Ohio State Univ., Columbus, Ohio, 1971, Academic Press, New York (1971), pp. 233–257.

    Google Scholar 

  38. D. Ruppert, “Efficient estimations from a slowly convergent Robbins-Monro process,” Tech. Rep. 781, School of Oper. Res. and Indust. Eng., Cornell Univ. (1988).

  39. T. Sharia, “On the recursive parameter estimation in the general discrete time statistical model,” Stochastic Process. Appl., 73, No. 2, 151–172 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  40. P. Spreij, “Recursive approximate maximum likelihood estimation for a class of counting process models,” J. Multivariate Anal., 39, No. 2, 236–245 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  41. G. Yin and I. Gupta, “On a continuous time stochastic approximation problem. Stochastic optimization,” Acta Appl. Math., 33, No. 1, 3–20 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  42. G. Yin, “Stochastic approximation: theory and applications,” in: Handbook of Stochastic Analysis and Applications. Statist. Textbooks Monogr., 163, Dekker, New York (2002), pp. 577–624.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Sharia.

Additional information

__________

Translated from Sovremennaya Matematika i Ee Prilozheniya (Contemporary Mathematics and Its Applications), Vol. 45, Martingale Theory and Its Application, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lazrieva, N., Sharia, T. & Toronjadze, T. Semimartingale stochastic approximation procedure and recursive estimation. J Math Sci 153, 211–261 (2008). https://doi.org/10.1007/s10958-008-9127-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-008-9127-y

Keywords

Navigation