Skip to main content
Log in

Concentration of the point spectrum on the continuous one in problems of linear water-wave theory

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

For the linear theory of water waves, we find out families of submerged or surface-piercing bodies in an infinite three-dimensional canal, which depend on a small parameter ε > 0 and have the following property: for any positive d and natural J, there exists ε(d, J) > 0 such that, for ε ∈ (0, ε(d, J)], the segment [0, d] of the continuous spectrum of the problem contains at least J eigenvalues. These eigenvalues are associated with trapped modes, i.e., solutions of the homogeneous problem, which decay exponentially at infinity and possess finite energy. Bibliography: 27 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Kuznetsov, V. Maz’ya, and B. Vainberg, Linear Water Waves, Cambridge University Press, Cambridge (2002).

    MATH  Google Scholar 

  2. O. A. Ladyzhenskaya, Boundary Value Problems of Mathematical Physics [in Russian], Moscow (1973).

  3. D. V. Evans, M. Levitin, and D. Vasil’ev, “Existence theorems for trapped modes,” J. Fluid Mech., 261, 21–31 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  4. I. Roitberg, D. Vassiliev, and T. Weidl, “Edge resonance in an elastic semi-strip,” Quart. J. Appl. Math., 51, 1–13 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  5. S. A. Nazarov, “Trapped modes for a cylindrical elastic waveguide with a damping gasket,” Zh. Vychisl. Mat. Mat. Fiz., 48 (2008).

  6. C. M. Linton and P. McIver, “Embedded trapped modes in water waves and acoustics,” Wave Motion, 45, 16–29 (2007)

    Article  Google Scholar 

  7. I. V. Kamotskii and S. A. Nazarov, “Wood’s anomalies and surface waves in the problem of scattering by a periodic boundary. 1,” Mat. Sb., 190, No. 1, 109–138; No. 2, 43–70 (1999).

    MathSciNet  Google Scholar 

  8. I. V. Kamotskii and S. A. Nazarov, “The augmented scattering matrix and exponentially decaying solutions of an elliptic problem in a cylindrical domain,” Zap. Nauchn. Semin. POMI, 264, 66–82 (2000).

    Google Scholar 

  9. S. A. Nazarov, “A criterion for the existence of decaying solutions in the problem on a resonator with a cylindrical waveguide,” Funkt. Anal. Prilozh., 40, 30–32 (2006).

    Google Scholar 

  10. S. A. Nazarov, “Artificial boundary conditions for finding surface waves in the problem of diffraction by a periodic boundary,” Zh. Vychisl. Mat. Mat. Fiz., 46, 2267–2278 (2006).

    Google Scholar 

  11. S. N. Leora, S. A. Nazarov, and A. V. Proskura, “Derivation of limiting equations for elliptic problems in thin domains using computers,” Zh. Vychisl. Mat. Mat. Fiz., 26, 1032–1048 (1986).

    MATH  MathSciNet  Google Scholar 

  12. S. A. Nazarov, “A general scheme for averaging self-adjoint elliptic systems in multidimensional domains, including thin domains,” Algebra Analiz, 7, 1–92 (1995).

    MATH  Google Scholar 

  13. S. A. Nazarov, Asymptotic Theory of Thin Plates and Rods. Vol. 1. Dimension Reduction and Integral Estimates [in Russian], Novosibirsk (2002).

  14. M. S. Birman and M. Z. Solomyak, Spectral Theory of Self-Adjoint Operators in Hilbert Space, Reidel Publ. Company, Dordrecht (1986).

    Google Scholar 

  15. M. I. Vishik and L. A. Lyusternik, “Regular degeneration and boundary layer for linear differential equations with small parameter,” Usp. Mat. Nauk, 12, 3–122 (1957).

    MATH  MathSciNet  Google Scholar 

  16. S. A. Nazarov, “Uniform estimates of remainders in asymptotic expansions of solutions to the problem on eigen-oscillations of a piezoelectric plate,” Probl. Mat. Analiz, 25, 99–188 (2003).

    MATH  Google Scholar 

  17. M. Lobo, S. A. Nazarov, and E. Perez, “Eigen-oscillations of contrasting nonhomogeneous bodies: asymptotic and uniform estimates for eigenvalues,” IMA J. Appl. Math., 70, 419–458 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  18. D. Gomez, M. Lobo, S. A. Nazarov, and E. Perez, “Spectral stiff problems in domains surrounded by thin bands: Asymptotic and uniform estimates for eigenvalues,” J. Math. Pures Appl., 85, 598–632 (2006).

    MATH  MathSciNet  Google Scholar 

  19. O. A. Oleinik, A. S. Shamaev, and G. A. Yosifian, Mathematical Problems in Elasticity and Homogenization, Amsterdam, North-Holland (1992).

    Google Scholar 

  20. V. A. Kondratiev, “Boundary problems for elliptic equations in domains with conic or angular points,” Trudy Moskov. Mat. Obshch., 16, 209–293 (1967).

    Google Scholar 

  21. V. G. Maz’ja and B. A. Plamenevskii, “On the coefficients in the asymptotics of solutions of elliptic boundary value problems in domains with conical points,” Math. Nach., 76, 29–60 (1977).

    Article  MathSciNet  Google Scholar 

  22. V. G. Maz’ja and B. A. Plamenevskii, “Estimates in L p and Hölder classes and the Miranda-Agmon maximum principle for solutions of elliptic boundary value problems in domains with singular points on the boundary,” Math. Nachr., 81, 25–82 (1978).

    Article  MathSciNet  Google Scholar 

  23. S. A. Nazarov, “The polynomial property of self-adjoint elliptic boundary-value problems and the algebraic description of their attributes,” Usp. Mat. Nauk, 54, 77–142 (1999).

    Google Scholar 

  24. S. A. Nazarov and B. A. Plamenevsky, Elliptic Problems in Domains with Piecewise Smooth Boundaries, Walter de Gruyter, Berlin, New York (1994).

    MATH  Google Scholar 

  25. S. A. Nazarov, “Self-adjoint extensions of the Dirichlet problem operator in weighted function spaces,” Mat. Sb., 137, 224–241 (1988).

    Google Scholar 

  26. S. A. Nazarov, “Asymptotic conditions at a point, self-adjoint extensions of operators and the method of matched asymptotic expansions,” Trudy Peterb. Mat. Obshch., 5, 112–183 (1996).

    Google Scholar 

  27. S. A. Nazarov, “Asymptotic behavior with respect to a small parameter of the solution to a boundary value problem that is elliptic in the sense of Agranovich-Vishik in a domain with a conic point,” Probl. Mat. Anal., 7, 146–167 (1979).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Nazarov.

Additional information

__________

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 348, 2007, pp. 98–126.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nazarov, S.A. Concentration of the point spectrum on the continuous one in problems of linear water-wave theory. J Math Sci 152, 674–689 (2008). https://doi.org/10.1007/s10958-008-9095-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-008-9095-2

Keywords

Navigation