Skip to main content
Log in

Justification of a quasistationary approximation for the Stefan problem

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

Unique solvability of the one-phase Stefan problem with a small multiplier ε at the time derivative in the equation is proved on a certain time interval independent of ε for ε ∈ (0, ε0). The solution to the Stefan problem is compared with the solution to the Hele-Show problem, which describes the process of melting materials with zero specific heat ε and can be regarded as a quasistationary approximation for the Stefan problem. It is shown that the difference of the solutions has order \( \mathcal{O}(\varepsilon ) + \mathcal{O}(e^{ - \tfrac{{ct}} {\varepsilon }} ) \) . This provides a justification of the quasistationary approximation. Bibliography: 23 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. A. Caffarelly, “Some aspects of the one-phase Stefan problem,” Indiana Univ. Math. J., 27, 73–77 (1978).

    Article  MathSciNet  Google Scholar 

  2. D. Kinderlehrer and L. Nirenberg, “The smoothness of the free boundary in the one-phase Stefan problem,” Comm. Pure Appl. Math., 31, 257–282 (1978).

    Article  MATH  MathSciNet  Google Scholar 

  3. A. M. Meirmanov, “On classical solvability of the Stefan problem,” Dokl. Acad. Nauk SSSR, 249, No. 6, 1309–1312 (1979).

    MathSciNet  Google Scholar 

  4. E. I. Hanzawa, “Classical solution of the Stefan problem,” Tohoku Math. J., 33, 297–335 (1981).

    Article  MATH  MathSciNet  Google Scholar 

  5. A. M. Meirmanov, The Stefan Problem [in Russian], Nauka, Novosibirsk (1986).

    Google Scholar 

  6. E. V. Radkevich and A. S. Melikulov, Free Boundary Problems [in Russian], FAN, Tashkent (1988).

    MATH  Google Scholar 

  7. V. A. Solonnikov, “Lectures on evolution free boundary problems: classical solutions,” Lect. Notes Math., 812, 123–175 (2003).

    Google Scholar 

  8. J. Escher and G. Simonet, “Classical solutions of multidimensional Hele-Show models,” SIAM J. Math. Anal., 28, № 5, 1028–1047 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  9. Yi. Fahuai, “Classical solutions of quasi-stationary Stefan problem,” Chin. Ann. Math., 17, No. 2, 175–186 (1996).

    MATH  Google Scholar 

  10. E. V. Frolova, “Quasistationary approximation for the Stefan problem,” Prob. Mat. Anal., 31, 167–178 (2005).

    MATH  Google Scholar 

  11. G. I. Bizhanova and V. A. Solonnikov, “On free boundary problems for second order parabolic equations,” Algebra Analiz, 12, No. 6, 98–139 (2000).

    MathSciNet  Google Scholar 

  12. G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific Publ. (1996).

  13. G. I. Bizhanova and V. A. Solonnikov, “On the solvability of the initial boundary value problem for a second order parabolic equation with time derivative in the boundary condition in weighted Hölder spaces,” Algebra Analiz, 5, No. 1, 109–142 (1993).

    MATH  MathSciNet  Google Scholar 

  14. V. A. Solonnikov, “On the justification of the quasistationary approximation in the problem of motion of a viscous capillary drop,” Interfaces Free Boundaries, 1, 125–173 (1999).

    MATH  MathSciNet  Google Scholar 

  15. V. A. Solonnikov and E. V. Frolova, “Weighted estimates of a solution to the linear problem connected with the one-phase Stefan problem in the case where the specific heat tends to zero,” Zap. Nauchn. Semin. POMI, 336, 239–263 (2006).

    MATH  Google Scholar 

  16. V. A. Solonnikov and A. G. Hachatrian, “Estimates of solutions to parabolic initial boundary value problems in weighted Hölder norms,” Tr. MIAN SSSR, 147, 147–155 (1980).

    MATH  Google Scholar 

  17. G. I. Bizhanova, “Investigation of solvability of the multidimensional two-phase Stefan problem and the nonstationary Florin filtration problem for second order parabolic equations in weighted Hölder spaces of functions,” Zap. Nauchn. Semin. POMI, 213, 14–47 (1994).

    Google Scholar 

  18. V. S. Belonosov and T. I. Zelenyak, Nonlocal Problems in the Theory of Quasilinear Parabolic Equations [in Russian], NGU, Novosibirsk (1975).

    Google Scholar 

  19. O. A. Ladyzhenskaya and N. N. Uraltseva, Linear and Quasilinear Elliptic Equations [in Russian], Nauka, Moscow (1973).

    MATH  Google Scholar 

  20. A. V. Ivanov, “Investigation of properties of generalized solutions to quasilinear second order parabolic equations”, Ph. D. Thesis, LGU (1966).

  21. N. V. Krilov and M. V. Safonov, “Some properties of solutions to parabolic equations with measurable coefficients,” Izv. Acad. Nauk SSSR, 44, 161–175 (1980).

    Google Scholar 

  22. D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag (1977).

  23. E. M. Landis, Second Order Parabolic and Elliptic Equations [in Russian], Nauka, Moscow (1971).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Solonnikov.

Additional information

__________

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 348, 2007, pp. 209–253.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solonnikov, V.A., Forolova, E.V. Justification of a quasistationary approximation for the Stefan problem. J Math Sci 152, 741–768 (2008). https://doi.org/10.1007/s10958-008-9091-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-008-9091-6

Keywords

Navigation