Skip to main content
Log in

Singular cochains and rational homotopy type

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

Rational homotopy types of simply connected topological spaces have been classified by weak equivalence classes of commutative cochain algebras (Sullivan) and by isomorphism classes of minimal commutative A -algebras (Kadeishvili).

We classify rational homotopy types of the space X by using the (noncommutative) singular cochain complex C*(X, Q), with additional structure given by the homotopies introduced by Baues, {E 1,k } and {F p,q}. We show that if we modify the resulting B -algebra structure on this algebra by requiring that its bar construction be a Hopf algebra up to a homotopy, then weak equivalence classes of such algebras classify rational homotopy types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. André, “Hopf algebras with divided powers,” J. Algebra, 18, 19–50 (1971).

    Article  MATH  MathSciNet  Google Scholar 

  2. J. F. Adams, “On the cobar construction,” Proc. Natl. Acad. Sci. USA, 42, 409–412 (1956).

    Article  MATH  Google Scholar 

  3. D. J. Anick, “Hopf algebras up to homotopy,” J. Amer. Math. Soc., 2, No. 3, 417–453 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  4. D. J. Anick, “R-local homotopy thory,” in: Homotopy theory and related topics (Kinosaki, 1988), Lect. Notes Math., 1418, Springer, Berlin (1990), pp. 78–85.

    Chapter  Google Scholar 

  5. M. Aubry and J.-M. Lemaire, “Homotopies d’algebres de Lie et de leurs algebtres enveloppantes,” In: Algebraic topology-rational homotopy (Louvain-la-Neuve, 1986), Lect. Notes Math., Vol. 1318, Springer, Berlin (1988), pp. 26–30.

    Chapter  Google Scholar 

  6. H. J. Baues, “The double bar and cobar construction,” Compositio Math., 43, No. 3, 331–341 (1981).

    MATH  MathSciNet  Google Scholar 

  7. H. J. Baues, “The cobar construction as a Hopf algebra,” Invent. Math., 132, No. 3, 467–489 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  8. H. J. Baues and J. M. Lemaire, “Minimal models in homotopy theory,” Math. Ann., 225, No. 3, 219–242 (1977).

    Article  MATH  MathSciNet  Google Scholar 

  9. N. A. Berikashvili, “The homology theory of spaces,” Soobshch. Akad. Nauk Gruz. SSR, 59, 13–16 (1970).

    MATH  Google Scholar 

  10. N. A. Berikashvili, “Differentials of a spectral sequence,” Tr. Tbiliss. Mat. Inst. Razmadze, 51, 5–106 (1976).

    Google Scholar 

  11. E. H. Brown, “Twisted tensor products, I,” Ann. Math. (2) 69, 223–246 (1959).

    Article  Google Scholar 

  12. R. Brown, “The twisted Eilenberg-Zilber theorem,” in: Celebrazioni Archimedee del secolo XX, Simposio di topologia (1967), pp. 34–37.

  13. G. de Rham, “Sur l’analysis situs des varietes a n dimensions,” J. Math. Pures Appl., 10, 115–200 (1931).

    Google Scholar 

  14. S. Eilenberg and S. MacLane, “Acyclic models,” Amer. J. Math., 75, 189–199 (1953).

    Article  MATH  MathSciNet  Google Scholar 

  15. Y. Felix, S. Halperin, and J.-C. Thomas, “Rational homotopy theory,” Preprint (1998).

  16. E. Friedlander, P. A. Griffiths, and J. Morgan, “Homotopy theory and differential forms,” In: Mimeographed Notes, Seminar of Geometry, Florence (1972).

  17. M. Gerstenhaber and A. A. Voronov, “Higher-order operations on the Hochschild complex,” Funct. Anal. Appl. 29, No. 1, 1–5 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  18. M. Gerstenhaber and A. A. Voronov, “Homotopy G-algebras and moduli space operad,” Internat. Math. Res. Notices, No. 3, 141–153 (1995).

  19. E. Getzler and J. D. Jones, “Operads, homotopy algebra, and iterated integrals for double loop spaces,” Preprint, (1995).

  20. V. K. A. M. Gugenheim, “On the multiplicative structure of the de Rham theory,” J. Differential Geometry, 11, No. 2, 309–314 (1976).

    MATH  MathSciNet  Google Scholar 

  21. V. K. A. M. Gugenheim, L. Lambe, and J. D. Stasheff, “Perturbation theory in differential homological algebra, II,” Ill. J. Math., 35, No. 3, 357–373 (1991).

    MATH  MathSciNet  Google Scholar 

  22. J. Huebschmann and T. Kadeishvili, “Small models for chain algebras,” Math. Z., 207, No. 2, 245–280 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  23. T. V. Kadeishvili, “On the theory of homology of fiber spaces,” Int. Topology Conf. (Moscow State Univ., Moscow, 1979), Usp. Mat. Nauk 35, No. 3(213), 183–188 (1980).

    MathSciNet  Google Scholar 

  24. T. V. Kadeishvili, “A(∞)-algebra structure in cohomology and rational homotopy type,” Forschungsschwerpunkt Geometrie, Universität Heidelberg, Math. Inst. Heft, 37, October (1988), pp. 1–64.

  25. T. V. Kadeishvili, “The A(∞)-algebra structure in cohomology, and rational homotopy type,” Proc. A. Razmadze Math. Inst., 107, 1–96 (1993).

    MathSciNet  Google Scholar 

  26. T. V. Kadeishvili, “The category of differential coalgebras and the category of A(∞)-algebras,” Tr. Tbilis. Mat. Inst. A. Razmadze, 77, 50–70 (1985).

    MATH  MathSciNet  Google Scholar 

  27. T. V. Kadeishvili, “The predifferential of a twisting product,” Russ. Math. Surv. 41, No. 6, 135–147 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  28. T. V. Kadeishvili and S. Saneblidze, “A cubical model for fibration,” Math. AT/0210006.

  29. Z. Kharebava, “On a multiplicativity up to homotopy of the Gugenheim map,” Georgian Math. J., 9, No. 3, 549–566 (2002).

    MATH  MathSciNet  Google Scholar 

  30. L. G. Khelaia, “On some chain operations,” Soobshch. Akad. Nauk Gruzin. SSR 96, No. 3, 529–532 (1979).

    MathSciNet  Google Scholar 

  31. T. Lada, “Commutators of A structures,” in: Higher Homotopy Structures in Topology and Mathematical Physics (Poughkeepsie, NY, 1996), Contemp. Math., Vol. 227, Amer. Math. Soc., Providence, RI (1999), pp. 227–233.

    Google Scholar 

  32. D. Lemann, “Théorie homotopique des forms différentielles,” Astérisque, 45 (1977).

  33. M. Markl, “A cohomology theory for A(m)-algebras and applications,” J. Pure Appl. Algebra, 83, No. 2, 141–175 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  34. J. P. May, “Simplicial objects in algebraic topology,” in: Van Nostrand Mathematical Studies, No. 11, D. Van Nostrand Co., Princeton, Toronto-London (1967).

    Google Scholar 

  35. W. Michaelis, “Lie Coalgebras,” Adv. Math. 38, No. 1, 1–54 (1980).

    Article  MATH  MathSciNet  Google Scholar 

  36. J. Milnor and J. C. Moore, “On the structure of Hopf algebras,” Ann. Math. (2), 81, 211–264 (1965).

    Article  MathSciNet  Google Scholar 

  37. H. J. Munkholm, “The Eilenberg-Moore spectral sequence and strongly homotopy multiplicative maps,” J. Pure Appl. Algebra, 5, 1–50 (1974).

    Article  MATH  MathSciNet  Google Scholar 

  38. D. Quillen, “Rational homotopy theory,” Ann. Math. (2), 90, 205–295 (1969).

    Article  MathSciNet  Google Scholar 

  39. V. A. Smirnov, “Homology theory of fibre spaces,” Russ. Math. Surv., 35, No. 3, 183–188 (1980).

    Article  Google Scholar 

  40. E. H. Spanier, Algebraic Topology, McGraw-Hill, New York-Toronto-London (1966).

    MATH  Google Scholar 

  41. J. D. Stasheff, “Homotopy associativity of H-spaces, I, II,” Trans. Amer. Math. Soc. 108, 275–292 (1963); 108, 293–312 (1963).

    Article  MathSciNet  Google Scholar 

  42. J. Stasheff and H. Halperin, “Differential algebra in its own rite,” Proc. Adv. Stud. Inst. Alg. Topol. (Aarhus Univ., Aarhus 1970), Vol. III, Various Publ. Ser., No. 13, Mat. Inst., Aarhus Univ., Aarhus (1970), pp. 567–577.

    Google Scholar 

  43. D. Sullivan, “Infinitesimal computations in topology,” Inst. Hautes Études Sci. Publ. Math., No. 47, 269–331 (1977).

  44. D. Tanré, “Homotopie rationnelle: Modeles de Chen, Quillen, Sullivan,” in: Lect. Notes Math., Vol. 1025, Springer-Verlag, Berlin (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Sovremennaya Matematika i Ee Prilozheniya (Contemporary Mathematics and Its Applications), Vol. 43, Topology and Its Applications, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kharebava, Z. Singular cochains and rational homotopy type. J Math Sci 152, 330–371 (2008). https://doi.org/10.1007/s10958-008-9069-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-008-9069-4

Keywords

Navigation