Skip to main content
Log in

Standard model of fermions on the domain wall in five-dimensional space-time

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

The mechanism of generation of the Standard Model for fermions on the domain wall in five-dimensional space-time is presented. As a result of self-interaction of five-dimensional fermions and gravity induced by matter fields, in the strong coupling regime, in the model there arises a spontaneous translational symmetry breaking, which leads to localization of light particles on a 3 + 1-dimensional domain wall (“3-brane”) that is embedded into a five-dimensional anti-de Sitter space-time (AdS5). Appropriate low-energy, effective action, classical kink-like vacuum configurations for the gravity and scalar fields are investigated. Mass spectra for light composite particles and their coupling constants interaction in ultra-low-energy, which localize on the brane, are explored. We establish estimates of characteristic scales and constants interactions of the model and also a relation between the bulk five-dimensional gravitational constant, curvature of AdS5 space-time, and brane Newton’s constants. The induced cosmological constant on the brane exactly vanishes in all orders of the theory perturbation. We find out that scalar interaction is strongly suppressed at ultra-low-energy, and the brane fluctuations (branons) are suitable “sterile” canditates for explanation of the phenomenon of Dark Matter. Bibliography: 21 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Rubakov and M. E. Shaposhnikov, Phys. Lett., B125, 136 (1983); ibid., B125, 139 (1983); V. A. Rubakov, Usp. Fiz. Nauk, 171, 913 (2001); Usp. Fiz. Nauk, 173, 219 (2003).

    Google Scholar 

  2. K. Akama, Lect. Notes Phys., 176, 267 (1982); hep-th/0001113; M. Visser, Phys. Lett., B159, 22 (1985); hep-th/9910093; N. Arkani-Hamed, S. Dimopoulos, and G. R. Dvali, Phys. Lett., B429, 263 (1998); Phys. Rev., D59, 086004 (1999); I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, and G. R. Dvali, Phys. Lett., B436, 257 (1998); M. Gogberashvili, Mod. Phys. Lett., A14, 2025 (1999); Int. J. Mod. Phys., D11, 1639 (2002); hep-ph/0001109; L. Randall and R. Sundrum, Phys. Rev. Lett., 83, 3370, 4690 (1999).

    Article  Google Scholar 

  3. V. A. Rubakov, Phys. Usp., 44, 871 (2001); Phys. Usp., 46, 211 (2003).

    Article  Google Scholar 

  4. I. Antoniadis, “Physics with large extra dimensions,” in: High-Energy Physics, Beatenberg (2001), p. 301; hep-th/0102202; S. Forste, Fortsch. Phys., 50, 221 (2002).

  5. Yu. A. Kubyshin, “Models with extra dimensions and their phenomenology,” (2001); hep-ph/0111027; J. Hewett and M. Spiropulu, Ann. Rev. Nucl. Part. Sci., 52, 397 (2002).

  6. R. Dick, Class. Quant. Grav., 18, R1 (2001); D. Langlois, Prog. Theor. Phys. Suppl., 148, 181 (2003); R. Maartens, Living Rev. Rel., 7, 7 (2004); P. Brax, C. van de Bruck, and A. C. Davis, Rept. Prog. Phys., 67, 2183 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  7. C. P. Burgess, Annals Phys., 313, 283 (2004).

    Article  MathSciNet  Google Scholar 

  8. G. Gabadadze, ICTP Lectures on Large Extra Dimensions (2003); hep-ph/0308112.

  9. F. Feruglio, Eur. Phys. J., C33, S114 (2004).

    Article  Google Scholar 

  10. C. Csaki, TASI Lectures on Extra Dimensions and Branes (2004); hep-ph/0404096; T. G. Rizzo, Pedagogical Introduction on Extra Dimensions (2004); hep-ph/0409309.

  11. A. A. Andrianov, V. A. Andrianov, P. Giacconi, and R. Soldati, JHEP, 07, 003 (2005).

    Article  MathSciNet  Google Scholar 

  12. O. DeWolfe, D. Z. Freedman, S. S. Gubser, and A. Karch, Phys. Rev., D62, 046008 (2000).

    Google Scholar 

  13. T. Gherghetta and M. E. Shaposhnikov, Phys. Rev. Lett., 85, 240 (2000); M. Laine, H. B. Meyer, K. Rummukainen, and M. Shaposhnikov, JHEP, 01, 068 (2003); JHEP, 04, 027 (2004).

    Article  MathSciNet  Google Scholar 

  14. A. A. Andrianov, V. A. Andrianov, P. Giacconi, and R. Soldati, JHEP, 07, 063 (2003).

    Article  Google Scholar 

  15. A. A. Andrianov and L. Bonora, Nucl. Phys., B233, 232 (1984); ibid., B233, 247 (1984).

    Article  Google Scholar 

  16. Ya. B. Zel’dovich, Pis’ma ZETF, 6, 883 (1967); A. D. Sakharov, Dokl. Akad. Nauk SSSR, 177, 70 (1967).

    Google Scholar 

  17. E. G. Adelberger, B. R. Heckel, and A. E. Nelson, Ann. Rev. Nucl. Part. Sci., 53, 77 (2003).

    Article  Google Scholar 

  18. A. Dobado and A. L. Maroto, Nucl. Phys., B592, 203 (2001); J. Alcaraz, J. A. R. Cembranos, A. Dobado, and A. L. Maroto, Phys. Rev., D67, 075010 (2003); J. A. R. Cembranos, A. Dobado, and A. L. Maroto, Phys. Rev., D68, 103505 (2003); Phys. Rev., D70, 096001 (2004).

    Article  MathSciNet  Google Scholar 

  19. S. L. Dubovsky, V. A. Rubakov, and P. G. Tinyakov, Phys. Rev., D62, 105011 (2000); S. L. Dubovsky and V. A. Rubakov, Int. J. Mod. Phys., A16, 4331 (2001).

    Google Scholar 

  20. V. A. Miransky, M. Tanabashi, and K. Yamawaki, Phys. Lett., B221, 177 (1989).

    Google Scholar 

  21. W. Pauli, Teoria della Relatività, Boringhieri, Torino (1970), pp. 65–66.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Andrianov.

Additional information

Dedicated to the 100th birthday of M. P. Bronstein

__________

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 347, 2007, pp. 5–29.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrianov, A.A., Andrianov, V.A., Giacconi, P. et al. Standard model of fermions on the domain wall in five-dimensional space-time. J Math Sci 151, 2801–2812 (2008). https://doi.org/10.1007/s10958-008-9006-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-008-9006-6

Keywords

Navigation