Skip to main content
Log in

Calculation of the asymptotics of the two-point correlation function for one-dimensional Bose gas

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

We consider a quantum field-theoretical model which describes spatially-nonhomogeneous, one-dimensional, repulsive Bose gas in an external harmonic potential. The two-point correlation function is calculated in the framework of functional integration. The corresponding functional integrals are estimated by means of stationary phase approximation. Asymptotic estimates are obtained in the limit as the temperature tends to zero while the volume occupied by the quasi-condensate increases. A power-law behavior is established for the correlation function in this limit. It is shown that the power-law behavior is governed by the critical exponent depending on spatial arguments. Bibliography 32 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev. Mod. Phys., 71, 463 (1999).

    Article  Google Scholar 

  2. C. J. Pethic and H. Smith, Bose-Einstein Condensation in Dilute Gases, Cambridge Univ. Press (2002).

  3. T. Donner, S. Ritter, T. Bourdel, A. Öttl, M. Köhl, and T. Esslinger, Science, 315, 1556 (2007).

    Article  Google Scholar 

  4. D. M. Gangardt and G. V. Shlyapnikov, Phys. Rev. Lett., 90, 010401 (2003).

    Google Scholar 

  5. K. V. Kheruntsyan, D. M. Gangardt, P. D. Drummond, and G. V. Shlyapnikov, Phys. Rev. A, 71, 053615 (2005).

    Google Scholar 

  6. C. Gils, L. Pollet, A. Vernier, F. Herbert, G. G. Batrouni, and M. Troyer, “Quantum Monte-Carlo study of a 1D phase-fluctuating condensate,” arXiv:cond-mat/0701441 (2007).

  7. V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge Univ. Press (1993).

  8. N. M. Bogoliubov, R. K. Bullough, V. S. Kapitonov, C. Malyshev, and J. Timonen, Europhys. Lett., 55, 755 (2001).

    Article  Google Scholar 

  9. N. M. Bogoliubov, C. Malyshev, R. K. Bullough, and J. Timonen, Phys. Rev. A, 69, 023619 (2004).

    Google Scholar 

  10. N. M. Bogoliubov and C. Malyshev, St.Petersburg Math. J., 17, 63 (2006).

    Article  MathSciNet  Google Scholar 

  11. V. N. Popov, Functional Integrals in Quantum Field Theory and Statistical Physics, D. Reidel, Dordrecht (1983).

    MATH  Google Scholar 

  12. L. S. Schulman, Techniques and Applications of Path Integration, J. Wiley & Sons, New York (1981).

    MATH  Google Scholar 

  13. V. N. Popov, Functional Integrals and Collective Excitations, Cambridge Univ. Press (1987, 1990).

  14. V. N. Popov and V. S. Yarunin, Collective Effects in Quantum Statistics of Radiation and Matter, Kluwer, Dordrecht (1988).

    Google Scholar 

  15. H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, World Scientific, Singapore (1990, 1995, 2004).

    Google Scholar 

  16. V. N. Popov, J. Soviet Math., 46, 1619 (1989).

    Article  MathSciNet  Google Scholar 

  17. C. Itzykson and J.-B. Zuber, Quantum Field Theory, McGraw-Hill, New York (1980).

    Google Scholar 

  18. M. Naraschewski and D. M. Stamper-Kurn, Phys. Rev. A, 58, 2423 (1998).

    Article  Google Scholar 

  19. S. Stringari, Phys. Rev. A, 58, 2385 (1998).

    Article  Google Scholar 

  20. V. N. Popov, Teor. Mat. Fiz., 11, 354 (1972).

    Google Scholar 

  21. A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental Functions, McGraw-Hill, New York (1953).

    Google Scholar 

  22. E. Elizalde and A. Romeo, Rev. Math. Phys., 1, 113 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  23. P. Di Francesco, P. Mathieu, and D. Sénéchal, Conformal Field Theory, Springer, New York (1997).

    MATH  Google Scholar 

  24. E. W. Hobson, The Theory of Spherical and Ellipsoidal Harmonics, Cambridge Univ. Press (1931).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Bogoliubov.

Additional information

__________

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 347, 2007, pp. 56–74.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bogoliubov, N.M., Malyshev, C. Calculation of the asymptotics of the two-point correlation function for one-dimensional Bose gas. J Math Sci 151, 2829–2839 (2008). https://doi.org/10.1007/s10958-008-9001-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-008-9001-y

Keywords

Navigation