Skip to main content
Log in

Four-vertex model

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

An exactly solvable four-vertex model on a square grid with different boundary conditions is considered. The application of the Algebraic Bethe Ansatz method allows us to calculate the partition function of the model. For fixed boundary conditions, we establish a relation between the scalar product of state vectors with the generating function of column-and row-strict boxed plane partitions. A tiling model on a periodic grid is discussed. Bibliography: 33 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. G. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press, San Diego (1982).

    MATH  Google Scholar 

  2. E. H. Lieb and F. Y. Wu, Phase Transitions and Critical Phenomena, Vol. 1, C. Domb and M. S. Green (eds.), Academic Press, London (1972), p. 321.

    Google Scholar 

  3. W. Li, H. Park, and M. Widom, “Finite-size scaling amplitudes in a random tiling model,” J. Phys. A, 23, L573 (1990).

    Article  MathSciNet  Google Scholar 

  4. W. Li and H. Park, “Logarithmic singularity in the surface free energy near commensurate-incommensurate transitions,” J. Phys. A, 24, 257 (1991).

    Article  Google Scholar 

  5. V. E. Korepin, “Calculation of norms of Bethe wave functions,” Comm. Math. Phys., 86, 391 (1982).

    Article  MATH  MathSciNet  Google Scholar 

  6. V. Korepin and P. Zinn-Justin, “Thermodynamic limit of the six-vertex model with domain wall boundary conditions,” J. Phys. A, 33, 7053 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  7. N. M. Bogoliubov, A. G. Pronko, and M. B. Zvonarev, “Boundary correlation functions of the six-vertex model,” J. Phys. A, 35, 5525 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  8. D. Allison and N. Reshetikhin, “Numerical study of the 6-vertex model with domain wall boundary conditions,” Ann. Inst. Fourier, 55, 1847 (2005).

    MATH  MathSciNet  Google Scholar 

  9. O. Syljuåsen and M. Zvonarev, “Directed-loop Monte-Carlo simulations of vertex models,” Phys. Rev. E, 70, 016118 (2004).

    Google Scholar 

  10. G. Kuperberg, “Another proof of the alternating-sign matrix conjecture,” Int. Math. Res. Notes, 1996, 139 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  11. F. Colomo and A. G. Pronko, “Square ice, alternating sign matrices, and classical orthogonal polynomials,” J. Stat. Mech., JSTAT, P01005 (2005).

  12. P. L. Ferrari and H. Sphon, “Domino tilings and the six-vertex model at its free fermion;” cond-mat/0605406.

  13. L. D. Faddeev, “Quantum inverse scattering method,” Sov. Sci. Rev. Math., C1, 107 (1980).

    Google Scholar 

  14. V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge Univ. Press (1993).

  15. I. G. Macdonald, Symmetric Functions and Hall Polynomials, Clarendon Press (1995).

  16. D. M. Bressoud, Proofs and Confirmations. The Story of the Alternating Sign Matrix Conjecture, Cambridge Univ. Press (1999).

  17. G. E. Andrews, The Theory of Partitions, Cambridge Univ. Press (1998).

  18. A. Vershik, “Statistical mechanics of combinatorial partitions and their limit configurations,” Funkts. Anal. Prilozh., 30, 90 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  19. A. Vershik and S. Kerov, “Asymptotics of the Plancherel measure of the symmetric group and the limit form of Young tableaux,” Dokl. Akad. Nauk SSSR, 18, 527 (1977).

    MATH  Google Scholar 

  20. A. Okounkov and N. Reshetikhin, “Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram,” J. Amer. Math. Soc., 16, 58 (2003).

    Article  MathSciNet  Google Scholar 

  21. R. Rajesh and D. Dhar, “An exactly solvable anisotropic directed percolation model in three dimensions,” Phys. Rev. Lett., 81, 1646 (1998).

    Article  Google Scholar 

  22. J. W. Essam and A. J. Guttmann, “Vicious walkers and directed polymer networks in general dimensions,” Phys. Rev. E, 52, 5849 (1995).

    Article  MathSciNet  Google Scholar 

  23. A. J. Guttmann, A. L. Owczarec, and X. G. Viennot, “Vicious walkers and Young tableaux. I: without walls,” J. Phys. A: Math. Gen., 31, 8123 (1998).

    Article  MATH  Google Scholar 

  24. C. Krattenthaler, A. J. Guttmann, and X. G. Viennot, “Vicious walkers, friendly walkers, and Young tableaux. II: with a wall,” J. Phys. A: Math. Gen., 33, 8835 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  25. N. M. Bogoliubov, “XXO Heisenberg chain and random walks,” J. Math. Sci., 138, 5636 (2006).

    Article  MathSciNet  Google Scholar 

  26. N. M. Bogoliubov, “Integrable models for vicious and friendly walkers,” J. Math. Sci., 143, 2729 (2007).

    Article  MathSciNet  Google Scholar 

  27. A. Okounkov, N. Reshetikhin, and C. Vafa, “Quantum Calabi-Yau and classical crystals,” hep-th/0309208.

  28. N. M. Bogoliubov, “Boxed plane partitions as an exactly solvable boson model,” J. Phys. A, 38, 9415 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  29. N. Tsilevich, “Quantum Inverse Method for the q-boson model and symmetric functions,” Funkts. Anal. Prilozh., 40, 53 (2006).

    MathSciNet  Google Scholar 

  30. K. Shigechi and M. Uchiyama, “Boxed skew plane partition and integrable phase model,” J. Phys. A: Math. Gen., 38, 10287 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  31. N. M. Bogoliubov, “Enumeration of plane partitions and the algebraic Bethe ansatz,” Teor. Mat. Fiz., 150, 165 (2007).

    MATH  Google Scholar 

  32. N. I. Abarenkova and A. G. Pronko, “The temperature correlator in the absolutely anisotropic Heisenberg XXZ-magnet,” Teor. Mat. Fiz., 131, 690 (2002).

    MATH  MathSciNet  Google Scholar 

  33. M. Gaudin, La Fonction d’Onde de Bethe, Masson, Paris (1983).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Bogoliubov.

Additional information

__________

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 347, 2007, pp. 34–55.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bogoliubov, N.M. Four-vertex model. J Math Sci 151, 2816–2828 (2008). https://doi.org/10.1007/s10958-008-9000-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-008-9000-z

Keywords

Navigation