Skip to main content
Log in

Bending of surfaces. III

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

A survey of works on discrete and continuous rigidity/nonrigidity and infinitesimal rigidity/nonrigidity of multidimensional surfaces, mainly in Euclidean spaces, is given. As a starting point for the methods of investigation, one considers three forms of the main theorem of the theory of surfaces (in local coordinates, in the invariant form, and in terms of exterior differential forms).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Abe and J. A. Erbacher, “Isometric immersions with the same Gauss map,” Math. Ann., 215, 197–201 (1975). (RZhMat, 1975, 12A704.)

    Article  MATH  MathSciNet  Google Scholar 

  2. C. B. Allendoerfer, “Rigidity for spaces of class greater than one,” Amer. Math. J., 61, No. 1, 633–644 (1939). (MR, 1940, Vol. 1, No. 1, p. 28; Zbl, 0021, 15803.)

    Article  MATH  MathSciNet  Google Scholar 

  3. Yu. A. Aminov, Geometry of Submanifolds [in Russian], Naukova Dumka, Kiev (2002).

    MATH  Google Scholar 

  4. V. I. Arnol’d, Mathematical Methods in Classical Mechanics, Grad. Texts Math., Vol. 60, Springer, New York (1978). (Zbl, 385, 70001; Zbl, 386, 70001.)

    Google Scholar 

  5. R. Beez, “Zur Theorie des Krümmungsmasses von Mannigfaltigkeiten höherer Ordnung,” Zeitschr. Math. Phys., 20, 423–444 (1875).

    Google Scholar 

  6. R. Beez, “Zur Theorie des Krümmungsmasses von Mannigfaltigkeiten höherer Ordnung,” Zeitschr. Math. Phys., 21, 373–401 (1876).

    Google Scholar 

  7. E. Berger, R. Bryant, and P. Griffiths, “The Gauss equations and rigidity of isometric embeddings,” Duke Math. J., 50, No. 3, 803–892 (1983). (RZhMat, 1984, 5A766.)

    Article  MATH  MathSciNet  Google Scholar 

  8. L. Bianchi, Lezioni di geometria differenziale, Vol. 1, Pisa, Spoerri (1902).

    MATH  Google Scholar 

  9. L. Bianchi, Lezioni di geometria differenziale, Vol. 2, Pisa, Spoerri (1903).

    MATH  Google Scholar 

  10. R. L. Bishop, “An infinitesimal cylindricity theorem,” Tenzor, 38, No. 2, 147–153 (1982). (RZhMat, 1984, 9A736.)

    MATH  MathSciNet  Google Scholar 

  11. D. Bleecker, “Isometric deformations of compact hypersurfaces,” Geom. Dedicata, 64, No. 2, 193–227 (1997). (RZhMat, 1997, 10A521.)

    Article  MATH  MathSciNet  Google Scholar 

  12. A. Borisenko, “On isometric submanifolds of arbitrary codimension with the same Grassmannian image,” in: Congr. Geom., Thessaloniki, 1991, Thessaloniki (1992), p. 114. (RZhMat, 1994, 10A375.)

  13. A. A. Borisenko, “On isometric submanifolds of arbitrary codimension in the Euclidean space with coinciding Grassmann images,” Mat. Zametki, 52, No. 4, 29–34 (1992). (RZhMat, 1993, 5A500.)

    MathSciNet  Google Scholar 

  14. Yu. E. Borovskii, “Completely integrable Pfaffian systems,” Izv. Vyssh. Uchebn. Zaved., 3, 28–40 (1959).

    MathSciNet  Google Scholar 

  15. Yu. E. Borovskii, “On completely integrable Pfaffian systems,” Izv. Vyssh. Uchebn. Zaved., 1, 35–38 (1960). (Zbl, 106, 69.)

    MathSciNet  Google Scholar 

  16. Yu. E. Borovskii, “The Beez theorem for irregular hypersurfaces,” Sib. Mat. Zh., 4, No. 4, 744–751 (1963). (RZhMat, 1964, 1A527.)

    MathSciNet  Google Scholar 

  17. Yu. E. Borovskii, “Pfaffian systems with coefficients in L n and their geometric applications,” Sib. Mat. Zh., 24, No. 2, 10–16 (1988). (RZhMat, 1988, 8A649.)

    MathSciNet  Google Scholar 

  18. N. Bourbaki, Differentiable and Analytic Manifolds. Summary [Russian translation], Mir, Moscow (1975). (Zbl, 306, 58001.)

    Google Scholar 

  19. R. Bryant, P. Griffiths, and D. Yang, “Characteristics and existence of isometric embeddings,” Duke Math. J., 50, No. 4, 893–994 (1983). (Zbl, 0536, 53022.)

    Article  MATH  MathSciNet  Google Scholar 

  20. E. Cartan, “La déformation des hypersurfaces dans l’espace eucliden réel à n dimensions,” Bull. Soc. Math. France, 44, 65–99 (1916).

    MathSciNet  MATH  Google Scholar 

  21. E. Cartan, “Sur la possibilité de plonger un espace riemannien donné dans un espace eucliden,” Ann. Soc. Math. Polon., 6, 1–7 (1927).

    Google Scholar 

  22. E. Cartan, Leçons sur la géomètrie des espaces de Riemann, Gauthier-Villars, Paris (1928).

    MATH  Google Scholar 

  23. C. C. Chen, “A characterization of the catenoid,” Ann. Acad. Brasil Ci., 51, 1–3 (1979). (Zbl, 408, 53004.)

    Google Scholar 

  24. F. Chen, “Isometric surfaces in E 5,” J. Jiangxi Norm. Univ. Natur. Sci. Ed., 21, No. 4, 289–292 (1997). (RZhMat, 1998, 12A529.)

    MATH  Google Scholar 

  25. S.-S. Chern, “On a theorem of algebra and its geometrical applications,” J. Indian Math. Soc., 8, 29–36 (1944). (MR, 1945, Vol. 6, No. 8, p. 216.)

    MathSciNet  MATH  Google Scholar 

  26. S.-S. Chern, “La géometrie des sous-variétés d’un espace euclidien à plusieurs dimensions,” Enseign. Math., 40, 26–46 (1951–1954).

    MathSciNet  Google Scholar 

  27. S.-S. Chern and R. Osserman, “Remarks on the Riemannian metric of a minimal submanifold,” in: Geom Symp., Lect. Notes Math., Vol. 894, Springer (1980), pp. 49–90. (MR, 83k:53010.)

  28. C.-K. Cho and C.-K. Han, “Compatibility equations for isometric embeddings of Riemannian manifolds,” Rocky Mountain J. Math., 23, No. 4, 1231–1252 (1993). (MR, 95c:53021.)

    Article  MATH  MathSciNet  Google Scholar 

  29. R. Connely and C. Servatius, “Higher-order rigidity—what is the proper definition?” Discrete Comput. Geom., 11, No. 2, 193–200 (1994). (MR, 94m:52027.)

    Article  MathSciNet  Google Scholar 

  30. M. Dajczer, “Rigidity of hypersurfaces,” in: Proc. 15th Braz. Colloq. Math. Poços de Caldas, 1985, Brazil (1987), pp. 269–272. (Zbl, 642, 53008.)

  31. M. Dajczer, M. Antonucci, G. Oliveira, P. Lima-Filho, and R. Tojeiro, Submanifolds and Isometric Immersions, Math. Lect. Series, Vol. 13, Publish or Perish, Houston (1986).

    Google Scholar 

  32. M. Dajczer and L. Florit, “On conformally flat submanifolds,” Comm. Anal. Geom., 4, No. 2, 261–284 (1996). (Zbl, 865, 53006.)

    MATH  MathSciNet  Google Scholar 

  33. M. Dajczer and L. Florit, “Euclidean conformally flat submanifolds in codimension two obtained as intersections,” Proc. Amer. Math. Soc., 127, No. 1, 265–269 (1999). (RZhMat, 1999, 12A661.)

    Article  MATH  MathSciNet  Google Scholar 

  34. M. Dajczer and L. Florit, “Compositions of isometric immersions in higher codimensions,” Manuscripta Math., 105, 507–517 (2001); Erratum: ibid, 110, 135 (2003). (MR, 2002m:53096.)

    Article  MATH  MathSciNet  Google Scholar 

  35. M. Dajczer and L. Florit, “Genuine deformations of submanifolds,” Comm. Anal. Geom., 12, No. 5, 1105–1129 (2004). (MR, 2005g:53094.)

    MATH  MathSciNet  Google Scholar 

  36. M. Dajczer and L. Florit, “Genuine rigidity of Euclidean submanifolds in codimension two,” Geom. Dedicata, 106, 195–210 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  37. M. Dajczer, L. Florit, and R. Tojeiro, “On deformable hypersurfaces in space forms,” Ann. Mat. Pura Appl., 174, 36–390 (1998). (MR, 2001b:53067.)

    Article  MathSciNet  Google Scholar 

  38. M. Dajczer and K. Gromol, “Gauss parametrizations and rigidity aspect of submanifolds,” J. Differential Geom., 22, No. 1, 1–12 (1985). (Zbl, 588, 53007.)

    MATH  MathSciNet  Google Scholar 

  39. M. Dajczer and K. Gromol, “Rigidity for complete Euclidean hypersurfaces,” J. Differential Geom., 31, No. 2, 401–416 (1990). (RZhMat, 1990, 12A754.)

    MATH  MathSciNet  Google Scholar 

  40. M. Dajczer and K. Gromol, “Isometric deformations of compact Euclidean submanifolds in codimension 2,” Duke Math. J., 79, No. 3, 605–618 (1995). (RZhMat, 1996, 6A447.)

    Article  MATH  MathSciNet  Google Scholar 

  41. M. Dajczer and L. Rodriguez, “Infinitesimal rigidity of Euclidean submanifolds,” Ann. Inst. Fourier, 40, No. 4, 939–949 (1990). (RZhMat, 1991, 12A743.)

    MATH  MathSciNet  Google Scholar 

  42. M. Dajczer and K. Tenenblat, “Rigidity for complete Weingarten hypersurfaces,” Trans. Amer. Math. Soc., 312, No. 1, 129–140 (1989). (RZhMat, 1989, 12A761.)

    Article  MATH  MathSciNet  Google Scholar 

  43. M. Dajczer and R. Tojeiro, “On compositions of isometric immersions,” J. Differential Geom., 36, No. 1, 1–18 (1992). (Zbl, 768, 53027.)

    MATH  MathSciNet  Google Scholar 

  44. M. Dajczer and R. Tojeiro, “On submanifolds of two manifolds,” Math. Z., 214, No. 3, 405–413 (1993). (RZhMat, 1996, 10A471.)

    Article  MATH  MathSciNet  Google Scholar 

  45. G. Darboux, Leçons sur la théorie des surfaces et les applications géometriques du calcul infinitésimal, Paris (1946).

  46. G. De Rham, Differentiable Manifolds. Forms, Currents, Harmonic Forms, Springer, Berlin (1984).

    MATH  Google Scholar 

  47. M. Do Carmo and M. Dajczer, “A rigidity theorem for higher codimension,” Math. Ann., 109, 577–583 (1986). (RZhMat, 1986, 12A1003.)

    Article  Google Scholar 

  48. M. Do Carmo and M. Dajczer, “Conformal rigidity,” Amer. J. Math., 109, 963–985 (1987). (Zbl, 631, 53043.)

    Article  MATH  MathSciNet  Google Scholar 

  49. M. Do Carmo and F. Warner, “Rigidity and convexity of hypersurfaces in spheres,” J. Differential Geom., 4, 133–144 (1970). (Zbl, 0201, 23702.)

    MATH  Google Scholar 

  50. S. Dolbeault-Lemoin, “Sur la déformabilité des variétée plongées dans l’espace de Riemann,” Ann. Sci. École Norm. Sup., 3, No. 73, 357–438 (1956). (RZhMat, 1959, 3, 3177.)

    Google Scholar 

  51. N. V. Efimov, “Qualitative problems in the theory of deformations of surfaces,” Usp. Mat. Nauk, 3, No. 2, 47–158 (1948). (Zbl, 0030, 06901.)

    MATH  MathSciNet  Google Scholar 

  52. N. V. Efimov, “Qualitative problems in the theory of deformations of surfaces in the ’small’,” Proc. Steklov Inst. Math., 30 (1949). (Zbl, 0011, 4883.)

  53. N. V. Efimov, “Some theorems on rigidity and unbendability,” Usp. Mat. Nauk, 7, No. 5, 215–224 (1952). (Zbl, 0047, 15004.)

    MATH  MathSciNet  Google Scholar 

  54. L. P. Eisenhart, Riemannian Geometry, Princeton Univ. Press, Oxford Univ. Press, Princeton (1967).

    MATH  Google Scholar 

  55. S. P. Finikov, Cartan Method of Exterior Forms in Differential Geometry [in Russian], Moscow (1948).

  56. L. A. Florit, “On extensions of infinitesimal deformations,” J. London Math. Soc., 53, No. 3, 615–624 (1996). (MR, 97e:53113.)

    MATH  MathSciNet  Google Scholar 

  57. R. B. Gardner, “New vienpoints in the geometry of submanifolds of R N,” Bull. Amer. Math. Soc., 26, No. 1, 1–35 (1977). (Zbl, 0363, 53027.)

    Google Scholar 

  58. R. Goldstein and P. Ryan, “Rigidity and energy,” Global Analysis Appl., 2, 233–243 (1974).

    MathSciNet  Google Scholar 

  59. R. Goldstein and P. Ryan, “Infinitesimal rigidity theorem for submanifolds,” J. Differential Geom., 10, Nos. 1–2, 46–60 (1975). (Zbl, 0302, 53029.)

    MathSciNet  Google Scholar 

  60. T. A. Gorzii, “On the local unbendability of convex hypersurfaces in elliptic spaces,” Ukrain. Geom. Sb., 18, 49–50 (1975). (RZhMat, 1976, 4A778.)

    MathSciNet  Google Scholar 

  61. T. A. Gorzii, “Rigidity of convex hypersurfaces in elliptic spaces,” Ukrain. Geom. Sb., 18, 66–68 (1976).

    MathSciNet  Google Scholar 

  62. V. Hájková, “Deformations of hypersurfaces in R 4,” in: Differential Geom. and Appl. Satellite Conf. of ICM in Brno, 1998, Masaryk University, Brno (1999), pp. 191–194.

    Google Scholar 

  63. C. E. Harle, “Rigidity of hypersurfaces of constant scalar curvature,” Bull. Amer. Math. Soc., 76, No. 4, 710 (1970). (RZhMat, 1971, 2A641.)

    MathSciNet  Google Scholar 

  64. C. E. Harle, “Rigidity of hypersurfaces of constant scalar curvature,” J. Differential Geom., 5, No. 12, 85–111 (1971). (RZhMat, 1972, 1A1124.)

    MATH  MathSciNet  Google Scholar 

  65. I. Ivanova-Karatopraklieva, “Infinitesimal rigidity of hypersurfaces in Euclidean spaces,” Comp. Red. Acad. Bulg. Sci., 53, No. 6, 9–12 (2000). (MR, 2001g:53007.)

    MathSciNet  Google Scholar 

  66. I. Ivanova-Karatopraklieva and I. Kh. Sabitov, “Bending of surfaces. I,” in: Itogi Nauki i Tekhn., Ser. Problems in Geometry, Vol. 23, All-Union Institute for Scientific and Technical Information, Moscow (1991), pp. 131–184. (RZhMat, 1991, 11A817.)

    Google Scholar 

  67. I. Ivanova-Karatopraklieva and I. Kh. Sabitov, “Bending of surfaces. II,” in: Itogi Nauki i Tekhn., Ser. Problems in Geometry, Vol. 24, All-Union Institute for Scientific and Technical Information, Moscow (1996), pp. 108–167. (RZhMat, 1997, 2A415.)

    Google Scholar 

  68. H. Jacobowitz, “Deformations having a hypersurface fixed,” Proc. Symp. Pure Math., 23, 343–351 (1971). (Zbl, 26, 53003.)

    Google Scholar 

  69. H. Jacobowitz, “Implicit function theorems and isometric embeddings,” Ann. Math., 95, No. 2, 191–225 (1972). (RZhMat, 1972, 11A438.)

    Article  MathSciNet  Google Scholar 

  70. H. Jacobowitz, “Extending isometric embeddings,” J. Differential Geom., 9, No. 2, 291–307 (1974). (RZhMat, 1976, 7A902.)

    MATH  MathSciNet  Google Scholar 

  71. H. Jacobowitz, “Local analytic isometric deformations,” Indiana Univ. Math. J., 31, No. 1, 47–55 (1982). (RZhMat, 1982, 10A543.)

    Article  MATH  MathSciNet  Google Scholar 

  72. H. Jacobowitz, “Local isometric embeddings,” Ann. Math. Studies, 102, 381–393 (1982). (RZhMat, 1982, 9A619.)

    MathSciNet  Google Scholar 

  73. H. Jacobowitz, “The Gauss-Codazzi equations,” Tensor, 39, 15–22 (1982).

    MATH  MathSciNet  Google Scholar 

  74. V. F. Kagan, Foundations of Surface Theory [in Russian], Vol. 2, Moscow-Leningrad (1948). (Zbl, 0045, 24504.)

  75. E. Kaneda, “Global rigidity of compact classical Lie groups,” Hokkaido Math. J., 14, 365–385 (1985). (Zbl, 589, p. 266.)

    MATH  MathSciNet  Google Scholar 

  76. E. Kaneda and N. Tanaka, “Rigidity for isometric imbeddings,” J. Math. Kyoto Univ., 18, 1–70 (1978). (Zbl, 419, 53031.)

    MATH  MathSciNet  Google Scholar 

  77. W. Killing, Die nicht-euklidischen Raumformen in analytischer Behandlung, Teubner, Leipzig (1885).

    Google Scholar 

  78. V. S. Kim, “On unique definiteness of two-dimensional surfaces in the Euclidean space,” in: Problems in Differential Geometry “in the large,” Leningrad (1983), pp. 67–74. (RZhMat, 1983, 12A941.)

  79. S. B. Klimentov, “Global formulation of the main theorem of the theory of n-dimensional surfaces in an m-dimensional space of constant curvature,” Ukrain. Geom. Sb., 22, 64–81 (1979). (RZhMat, 1979, 8A728.)

    MATH  MathSciNet  Google Scholar 

  80. S. B. Klimentov, “On the extension of infinitesimal bendings of higher orders of simply connected surfaces of positive curvature,” Mat. Zametki, 36, No. 3, 393–403 (1984). (RZhMat, 1985, 1A876.)

    MathSciNet  Google Scholar 

  81. S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. 2, Interscience Publishers, New York (1969). (Zbl, 526, 53001.)

    MATH  Google Scholar 

  82. O. Kowalski, “Some algebraic theorems on vector-valued forms and their geometric applications,” Colloq. Math., 26, 59–92 (1972). (RZhMat, 1973, 6A742.)

    MATH  MathSciNet  Google Scholar 

  83. N. Kuiper, “C 1-isometric imbeddings,” Indag. Math., 17, No. 4, 545–556 (1955). (RZhMat, 1957, 847.)

    MathSciNet  Google Scholar 

  84. N. Kuiper, “C 1-isometric imbeddings,” Indag. Math., 17, No. 5, 683–689 (1955). (RZhMat, 1957, 847.)

    Google Scholar 

  85. S. Lang, Differential and Riemannian Manifolds, Grad. Texts Math., Vol. 160, Springer, Heidelberg (1995). (Zbl, 146, 175.)

    MATH  Google Scholar 

  86. L. Yu. Lizunova, “On infinitesimal bendings of hypersurfaces in Riemannian spaces,” Izv. Vyssh. Uchebn. Zaved., Mat., 3, 36–42 (1970). (RZhMat, 1970, 9A549.)

    MathSciNet  Google Scholar 

  87. N. N. Luzin, “A proof of one theorem of bending theory,” Izv. Akad. Nauk SSSR, OTN, 2, 81–106; 7, 115–132; 10, 65–84 (1939). (Zbl, 0023, 26704.)

    Google Scholar 

  88. P. E. Markov, “Infinitesimal bendings of two-dimensional surfaces in a four-dimensional flat space,” Ukrain. Geom. Sb., 21, 55–72 (1978). (RZhMat, 1978, 10A595.)

    MATH  Google Scholar 

  89. P. E. Markov, “Infinitesimal bendings of some multidimensional surfaces,” Mat. Zametki, 27, No. 3, 469–479 (1980). (RZhMat, 1980, 7A693.)

    MATH  MathSciNet  Google Scholar 

  90. P. E. Markov, “Higher-order infinitesimal bendings of multidimensional surfaces,” Ukrain. Geom. Sb., 25, 87–94 (1982). (RZhMat, 1983, 1A743.)

    MATH  Google Scholar 

  91. P. E. Markov, “Infinitesimal bendings of one class of multidimensional surfaces with boundaries,” Mat. Sb., 121, No. 1, 48–59 (1983). (RZhMat, 1983, 9A670.)

    MathSciNet  Google Scholar 

  92. P. E. Markov, “On one class of infinitesimal bendings of surfaces,” Izv. SKNC, 4, 22–25 (1985). (RZhMat, 1986, 7A867.)

    Google Scholar 

  93. P. E. Markov, “Higher-order infinitesimal bendings of multidimensional surfaces in spaces of constant curvature,” Mat. Sb., 133, No. 1, 64–85 (1987). (RZhMat, 1987, 8A672.)

    Google Scholar 

  94. P. E. Markov, “On immersion of metrics close to immersible metrics,” Ukrain. Geom. Sb., 35, 49–67 (1992). (Zbl, 0835, 53069.)

    Google Scholar 

  95. P. E. Markov, “General analytic and infinitesimal deformations of immersions. I,” Izv. Vyssh. Uchebn. Zaved., Mat., 9, 21–34 (1997). (RZhMat, 1998, 3A438.)

    Google Scholar 

  96. P. E. Markov, “General analytic and infinitesimal deformations of immersions. II,” Izv. Vyssh. Uchebn. Zaved., Mat., 11, 41–51 (1997). (MR, 99f:53063.)

    Google Scholar 

  97. P. E. Markov, “The congruency criterion for multidimensional surfaces in terms of fundamental forms,” in: Proc. Int. Semin. Geom. Anal. dedic. to N. V. Effimov, Rostov-on-Don (1998), pp. 50–51.

  98. P. E. Markov, “Type number and the rigidity of multidimensional surfaces,” Mat. Sb., 192, No. 1, 67–88 (2001). (RZhMat, 2001.08, 13A558.)

    Google Scholar 

  99. P. E. Markov and L. N. Shapovalova, “On one system of the theory of isometric immersions,” Izv. Vyssh. Uchebn. Zaved., Sev.-Kavk. Reg., 2, 13–17 (1995). (Zbl, 0859, 53042.)

    Google Scholar 

  100. P. Markov and O. Trejos, “Deformaciones isométricas infinitesimales de superficies multidimensionales ensambladas,” Rev. Mat. Teor. Apl., 8, No. 1, 27–32 (2001).

    Google Scholar 

  101. K. Masatoshi, “Isometric deformations of hypersurfaces in Euclidean space preserving mean curvature,” Tôhoku Math. J., 44, No. 3, 433–442 (1992). (RZhMat, 1993, 5A501.)

    Article  MATH  Google Scholar 

  102. Y. Matsuyama, “Rigidity of hypersurfaces with constant mean curvature,” Tôhoku Math. J., 28, 199–203 (1976). (MR, 1977, Vol. 54, No. 2, #3634.)

    Article  MATH  MathSciNet  Google Scholar 

  103. B. K. Mlodzeevskii, Studies on Bendings of Surfaces [in Russian], Moscow (1886).

  104. J. D. Moore, “Isometric immersions of Riemannian products,” J. Differential Geom., 5, No. 1, 159–168 (1971). (RZhMat, 1972, 1A1101; Zbl, 213, 238.)

    MATH  Google Scholar 

  105. H. Mori, “Remarks on complete deformable hypersurfaces in H n+1,” Indiana Math. J., 42, 361–366 (1993). (MR, 94g:53046.)

    Article  MATH  Google Scholar 

  106. H. Mori, “Remarks on complete deformable hypersurfaces in R 4,” J. Differential Geom., 4, 1–6 (1994). (MR, 95e:53085.)

    Article  Google Scholar 

  107. A. Nannicini, “Rigidita infinitesima per le ipersurficie compacte fortemente convesse di R n+1,” Bol. Unione Mat. Ital., 2,Suppl., 181–194 (1980). (RZhMat, 1981, 6A728.)

    MATH  MathSciNet  Google Scholar 

  108. J. F. Nash, “C 1-isometric imbeddings,” Ann. Math., 60, No. 3, 383–396 (1954). (RZhMat, 1956, 2439.)

    Article  MathSciNet  Google Scholar 

  109. J. F. Nash, “Embedding problem for Riemannian manifolds,” Usp. Mat. Nauk, 26, No. 4, 173–216 (1971). (Zbl, 217, 475.)

    MATH  MathSciNet  Google Scholar 

  110. K. Nomizu, “Uniqueness of the normal connections and congruence of isometric immersions,” Tôhoku Math. J., 28, No. 1, 613–617 (1977). (RZhMat, 1977, 9A846.)

    MathSciNet  Google Scholar 

  111. V. Oliker, “Some remarks on elliptic equations and infinitesimal deformations of submanifolds,” in: Global Differential Geometry and Global Analysis, Proc. Colloq., Berlin 1979, Lect. Notes Math., Vol. 838, Springer (1981), pp. 211–220. (RZhMat, 1981, 11A763.)

  112. D. I. Perepelkin, “Curvature and normal space of a manifold V m in R n,” Mat. Sb., 42, Nos. 1–3, 100–120 (1935). (Zbl, 0012, 08702.)

    Google Scholar 

  113. A. V. Pogorelov, Exterior Geometry of Convex Surfaces [in Russian], Moscow (1969). (RZhMat, 1969, 9A495.)

  114. M. M. Postnikov, Lectures on Geometry. Linear Algebra [in Russian], Nauka, Moscow (1986).

    Google Scholar 

  115. A. Ros, “Compact hypersurfaces with constant scalar curvature and a congruence theorem,” J. Differential Geom., 27, No. 2, 215–220 (1988). (RZhMat, 1988, 9A809.)

    MATH  MathSciNet  Google Scholar 

  116. V. V. Ryzhkov, “Bending of surfaces of the Euclidean space E N with conservation of the conjugate system,” Tr. Mosk. Inzh.-Stroit. Inst., 8, 86–112 (1960). (RZhMat, 1962, 4A404.)

    Google Scholar 

  117. I. Kh. Sabitov, “Local theory of bending of surfaces,” in: Itogi Nauki i Tekhn., Ser. Contemporary Problems in Mathematics, Fundamental Directions, Vol. 48, All-Union Institute for Scientific and Technical Information, Moscow (1989), pp. 196–270. (MR, 91c:53004.)

    Google Scholar 

  118. R. Sacksteder, “On hypersurfaces with no negative sectional curvatures,” Amer. J. Math., 82, 609–630 (1960). (Zbl, 1970, 1941H.)

    Article  MATH  MathSciNet  Google Scholar 

  119. R. Sacksteder, “The rigidity of hypersurfaces,” J. Math. Mech., 11, No. 27., 929–939 (1962). (Zbl, 0108, 34702.)

    MATH  MathSciNet  Google Scholar 

  120. S. Sasaki, “A global formulation of the fundamental theorem of the theory of surfaces in three dimensional Euclidean space,” Nagoya Math. J., 13, 69–82 (1958). (MR, 1959, Vol. 20, No. 5, #3565, p. 588.)

    MATH  MathSciNet  Google Scholar 

  121. S. Sasaki, “A proof of the fundamental theorem of hypersurfaces in a space-form,” Tensor, 24, 363–373 (1972).

    MATH  MathSciNet  Google Scholar 

  122. U. Sbrana, “Sulle varietá ad n − 1 dimensioni deformabili nello spazio euclideo ad n dimensioni,” Rend. Circ. Mat. Palermo, 27, 1–45 (1909).

    MATH  Google Scholar 

  123. J. A. Schouten and D. J. Struik, Einfuhrung in die neueren Methoden der Differentialgeometrie, Vol. 2, P. Noordhoff, Groningen (1938).

    Google Scholar 

  124. E. P. Sen’kin, “On one property of isometric transformations of convex surfaces in higher-dimensional spaces,” Ukrain. Geom. Sb., 3, 95 (1966). (RZhMat, 1967, 9A468.)

    MathSciNet  Google Scholar 

  125. E. P. Sen’kin, “Unbendability of convex hypersurfaces,” Ukrain. Geom. Sb., 12, 131–152 (1972). (RZhMat, 1973, 2A623.)

    MATH  MathSciNet  Google Scholar 

  126. E. P. Sen’kin, “Addendum to the article ‘Unbendability of convex hypersurfaces’,” Ukrain. Geom. Sb., 17, 132–134 (1975). (RZhMat, 1975, 7A929.)

    MATH  MathSciNet  Google Scholar 

  127. E. V. Shkryl’, “On the rigidity of a multi-dimensional cone,” Ivz. Vyssh. Uchebn. Zaved., Sev.-Kav. Reg., 4, 20–22 (2000). (Zbl, pre01902006.)

    Google Scholar 

  128. S. L. Silva, “On isometric and conformal rigidity of submanifolds,” An. Acad. Brasil. Ci., 71, No. 3, Pt. I, 321–325 (1999). (Zbl, 957, 53020.)

    MATH  Google Scholar 

  129. S. Silva, “On isometric and conformal rigidity of submanifolds,” Pacific J. Math., 199, 227–247 (2001). (MR, 2002f:53065.)

    Article  MATH  MathSciNet  Google Scholar 

  130. J. L. Synge, Tensorial Methods in Dynamics, Univ. of Toronto Press, Toronto (1936).

    MATH  Google Scholar 

  131. S. L. Sobolev, Applications of Functional Analysis in Mathematical Physics [in Russian], Leningrad Univ. (1960). (Zbl, 123, 90.)

  132. N. P. Sokolov, Spatial Matrices and Their Applications [in Russian], Moscow (1960).

  133. Z. Soyuçok, “The problem of isometric deformations of a Euclidean hypersurface preserving mean curvature,” Bull. Tech. Univ. Istambul, 49, Nos. 3–4, 551–562 (1996). (Zbl, 934, 53013.)

    MATH  Google Scholar 

  134. M. Spivak, A Comprehensive Introduction to Differential Geometry, Vol. 4, Berkleley (1979). (Zbl, 306, 53002.)

  135. M. Spivak, A Comprehensive Introduction to Differential Geometry, Vol. 5, Publish or Perish, Boston (1975). (Zbl, 306, 53003.)

    Google Scholar 

  136. L. N. Sretenskii, “On bendings of surfaces,” Mat. Sb., 36, No. 2, 109–111 (1929).

    Google Scholar 

  137. A. Svec, “On infinitesimal isometries of a hypersurface,” Czechoslovak Math. J., 24, 150–163 (1974). (RZhMat, 1975, 1A752.)

    MathSciNet  Google Scholar 

  138. A. Svec, “On the rigidity of certain surfaces in E 5,” Czech. Math. J., 27, 250–257 (1977).

    MathSciNet  Google Scholar 

  139. A. Svec, “On the equivalence of isometric surfaces in E 4,” Beitr. Algebra Geom., 15, 7–12 (1980). (RZhMat, 1977, 12A752.)

    MathSciNet  Google Scholar 

  140. A. Svec, Global Differential Geometry of Surfaces, Berlin (1981). (Zbl, 481, 53048.)

  141. R. H. Szczarba, “On existence and rigidity of isometric immersions,” Bull. Amer. Math. Soc., 75, 587–595 (1969). (Zbl, 0177, 24601; MR, 1970, Vol. 40, No. 3, #3471.)

    MathSciNet  Google Scholar 

  142. R. H. Szczarba, “On isometric immersions of Riemannian manifolds in Euclidean space,” Bull. Soc. Brasil Mat., 1, 31–45 (1970). (MR, 1974, Vol. 47, No. 3, #4182.)

    Article  MATH  MathSciNet  Google Scholar 

  143. S. Tachibana, “On isometric deformation vectors of the hypersurfaces in Riemannian manifolds,” Natur. Sci. Rep. Ochanomizu Univ., 27, No. 1, 1–9 (1976). (RZhMat, 1977, 1A706.)

    MathSciNet  MATH  Google Scholar 

  144. N. Tanaka, “Rigidity for elliptic isometric embeddings,” Proc. Japan Acad., 48, 370–372 (1972). (RZhMat, 1973, 7A725.)

    MATH  MathSciNet  Google Scholar 

  145. N. Tanaka, “Rigidity for elliptic isometric embeddings,” Nagoya Math. J., 51, 137–160 (1973). (MR, 1974, Vol. 48, No. 4, #7173.)

    MATH  MathSciNet  Google Scholar 

  146. K. Tenenblat, “A rigidity theorem for three-dimensional submanifolds in Euclidean six-space,” J. Differential Geom., 14, No. 2, 187–203 (1979). (RZhMat, 1981, 4A669; Zbl, 0424, 57009.)

    MATH  MathSciNet  Google Scholar 

  147. K. Tenenblat, “On infinitesimal isometric deformations,” Proc. Amer. Math. Soc., 75, No. 2, 269–275 (1979). (RZhMat, 1980, 1A777.)

    Article  MATH  MathSciNet  Google Scholar 

  148. T. Y. Thomas, “Riemann spaces of class one and their characterization,” Acta Math., 67, 169–211 (1936).

    Article  MATH  MathSciNet  Google Scholar 

  149. A. M. Vasil’ev, Theory of Differential-Geometric Structures [in Russian], Izd. Mosk. Univ., Moscow (1987). (Zbl, 656, 53001.)

    MATH  Google Scholar 

  150. I. N. Vekua, Generalized Analytic Functions [in Russian], Nauka, Moscow (1988). (Zbl, 698, 47036.)

    MATH  Google Scholar 

  151. P. Vincensini, “Sur une méthode d’application isométrique des surfaces de E 3 dans E 4,” Rev. Fac. Sci. Univ. Istanbul. Sér. A, 43, 13–27 (1987). (RZhMat, 1989, 3A623.)

    MathSciNet  Google Scholar 

  152. L. Whitt, “Isometric homotopy and codimension-two isometric immersions of the n-sphere into Euclidean space,” J. Differential Geom., 14, No. 2, 295–302 (1979). (Zbl, 427, 53027.)

    MATH  MathSciNet  Google Scholar 

  153. N. N. Yanenko, “Geometric structure of surfaces of small type,” Dokl. Akad. Nauk SSSR, 64, No. 5, 641–644 (1949). (MR, 1950, Vol. 11, No. 5, p. 395.)

    MATH  MathSciNet  Google Scholar 

  154. N. N. Yanenko, “On some necessary conditions of bendability of surfaces in multidimensional Euclidean spaces,” Dokl. Akad. Nauk SSSR, 65, No. 4, 449–452 (1949). (MR, 1950, Vol. 11, No. 5, p. 396.)

    MATH  MathSciNet  Google Scholar 

  155. N. N. Yanenko, “Structure of bendable surfaces in multidimensional Euclidean spaces,” Dokl. Akad. Nauk SSSR, 72, No. 5, 857–859 (1950). (MR, 1951, Vol. 12, No. 5, p. 357.)

    MATH  MathSciNet  Google Scholar 

  156. N. N. Yanenko, “On some projective-invariant properties of bendable surfaces in multidimensional Euclidean spaces,” Dokl. Akad. Nauk SSSR, 72, No. 6, 1025–1028 (1950). (MR, 1951, Vol. 12, No. 5, p. 357.)

    MATH  MathSciNet  Google Scholar 

  157. N. N. Yanenko, “Infinitesimal bendings of surfaces in multidimensional Euclidean spaces and projective-invariant characteristics of bendable surfaces,” Usp. Mat. Nauk, 7(50), 138–139 (1952).

    MATH  Google Scholar 

  158. N. N. Yanenko, “On the relationship between metric and projective properties of surfaces,” Dokl. Akad. Nauk SSSR, 82, No. 5, 685–688 (1952). (MR, 1953, Vol. 14, No. 1, p. 87.)

    MATH  MathSciNet  Google Scholar 

  159. N. N. Yanenko, “On a class of Riemannian metrics,” Dokl. Akad. Nauk SSSR, 83, No. 4, 533–536 (1952). (MR, 1953, Vol. 14, No. 1, p. 87.)

    MATH  MathSciNet  Google Scholar 

  160. N. N. Yanenko, “Metrics of class 2,” Dokl. Akad. Nauk SSSR, 83, No. 5, 667–669 (1952). (MR, 1953, Vol. 14, No. 1, p. 87.)

    MATH  MathSciNet  Google Scholar 

  161. N. N. Yanenko, “Some necessary conditions for bendability of surfaces V m in an (m+q)-dimensional Euclidean space,” Tr. Semin. Vekt. Tensor Anal., 9, 326–387 (1952). (MR, 1953, Vol. 14, No. 8, p. 794.)

    MathSciNet  Google Scholar 

  162. N. N. Yanenko, “Some problems of immersion of Riemannian metrics in Euclidean spaces,” Usp. Mat. Nauk, 8, No. 1, 21–100 (1953). (MR, 1953, Vol. 14, No. 11, p. 1122.)

    MATH  MathSciNet  Google Scholar 

  163. N. N. Yanenko, “On the theory of immersion of surfaces in multidimensional Euclidean spaces,” Tr. Mosk. Mat. Obshch., 3, 89–180 (1954). (RZhMat, 1955, 11.6079.)

    MathSciNet  Google Scholar 

  164. K. Yano, “Sur la théorie des déformations infinitésimales,” J. Fac. Sci. Univ. Tokyo Sect. 1A Math., 6, 1–75 (1949). (MR, 1950, Vol. 11, No. 9, p. 688.)

    MATH  Google Scholar 

  165. K. Yano, “Infinitesimal variations of submanifolds,” Kodai Math J., 1, 30–44 (1978). (Zbl, 388, 53017.)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 12, No. 1, pp. 3–56, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanova-Karatopraklieva, I., Markov, P.E. & Sabitov, I.K. Bending of surfaces. III. J Math Sci 149, 861–895 (2008). https://doi.org/10.1007/s10958-008-0033-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-008-0033-0

Keywords

Navigation