Skip to main content
Log in

Tensor-geometric methods for problems of the circuit theory

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

It is proved that to any electric circuit, there correspond two pairs of conjugate linear vector spaces. One of these pairs is generated by a homology group, while the other is generated by a cohomology group. A new method of analysis of mechanical and electric circuits is proposed, which consists of representing the main variables and matrices of oscillatory circuits in terms of multidimensional tensor objects. A solution for the problem of defining eigenvalues of pure-loop and pure-node circuits is obtained. A new method is developed for defining a full range of eigenvalues of linear oscillatory systems with a great number of degrees of freedom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. A. Aleksandrov, Combinatorial Topology [in Russian], Gostekhizdat (1948).

  2. P. A. Aleksandrov, Introduction to the Homological Theory of Dimension [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  3. A. A. Andronov et al., Oscillation Theory [in Russian], Nauka, Moscow (1981).

    Google Scholar 

  4. W. E. Arnoldi, “The principle of minimized iterations in the solution of the matrix eigenvalue problem,” Q. Appl. Math., 9, No. 1, 17–29 (1951).

    MathSciNet  Google Scholar 

  5. N. Aronszain, “Theory of reproducing kernels,” Trans. Amer. Math. Soc., 68 (1950).

  6. N. Aronszain, “On Rayleigh-Ritz and A. Weinstein methods for approximation of eigenvalues,” Proc. Natl. Acad. Sci. USA, 474–594 (1943).

  7. V. L. Biderman, Applied Theory of Mechanical Oscillations [in Russian], Vysshaya Shkola, Moscow (1972).

    Google Scholar 

  8. G. A. Bliss, Lectures on the Calculus of Variations, Chicago Univ. Press, Chicago (1946).

    MATH  Google Scholar 

  9. N. N. Bukhgolts, An Elementary Course in Theoretical Mechanics, Vol. 1 [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  10. H. Cartan and S. Eilenberg, Homological Algebra, Princeton University Press (1956).

  11. R. Courant and D. Hilbert, Methoden der Mathematischen Physik, Springer-Verlag, Berlin (1931).

    Google Scholar 

  12. A. Dold, Lectures on Algebraic Topology, Springer Verlag, New York-Berlin-Heidelberg (1972).

    MATH  Google Scholar 

  13. I. A. Druzhinski, Mechanical Circuits [in Russian], Machinostroyeniye, Leningrad (1977).

    Google Scholar 

  14. N. V. Efimov, Linear Algebra and Multidimensional Geometry [in Russian], Nauka, Moscow (1970).

    Google Scholar 

  15. N. V. Efimov, Introduction to the Theory of External Forms [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  16. D. K. Fadeyev and V. N. Fadeyeva, Computational Methods of Linear Algebra [in Russian], Gosfizmatizdat, Moscow (1963).

    Google Scholar 

  17. A. T. Fomenko and D. B. Fooks, A Course in Homotopic Topology [in Russian], Nauka, Moscow (1989).

    MATH  Google Scholar 

  18. F. R. Gantmakher, Lectures on Analytical Mechanics [in Russian], Fizmatgiz, Moscow (1966).

    Google Scholar 

  19. F. R. Gantmakher and M. G. Krein, Oscillation Matrices and Small Oscillations of Mechanical Systems [in Russian], GITL, Moscow (1950).

    Google Scholar 

  20. I. N. Gelfand, Lectures on Linear Algebra [in Russian], Nauka, Moscow (1966).

    Google Scholar 

  21. I. M. Gelfand and S. V. Fomin, Variational Calculus [in Russian], Fizmatgiz, Moscow (1961).

    Google Scholar 

  22. W. Givens, “A method of computing eigenvalues and eigenvectors,” in: U.S. Atomic Energy Community, ORNL-1574 (1954), pp. 107–120.

  23. W. Givens, “The characteristic value-vector problem,” J. Assoc. Comp. Machinery, 4, No. 3, 298–307 (1957).

    MathSciNet  Google Scholar 

  24. S. H. Gould, Variational Methods for Eigenvalue Problems, Toronto Univ. Press (1966).

  25. H. H. Happ, Gabriel Kron and Systems Theory, Union College Press, Schenectady, New York (1973).

    Google Scholar 

  26. H. H. Happ, Diakoptics and Networks, Academic Press, New York-London (1971).

    Google Scholar 

  27. W. Ingrum and C. Kromlet, “On the foundations of electric network theory, I,” Math. Phys. 23, No. 3 (1944).

    Google Scholar 

  28. A. N. Kolmogorov and S. V. Fomin, Elements of Function Theory and Functional Analysis [in Russian], Nauka, Moscow, (1972).

    Google Scholar 

  29. G. Kron, A Short Course in Tensor Analysis for Electrical Engineers, Wiley, New York (1942).

    MATH  Google Scholar 

  30. G. Kron, “Diakoptics: The piecewise solution of large scale systems,” Electrical Journal, London (1959).

  31. G. Kron, Equivalent Circuits of Electric Machinery, Wiley, New York (1951).

    Google Scholar 

  32. G. Kron, Tensor Analysis of Networks, Wiley, New York (1959).

    Google Scholar 

  33. L. D. Kudryavtsev, “On some mathematical questions of electrical circuit theory,” Usp. Mat. Nauk, No. 4, 50–115 (1945).

  34. A. K. Losev, Theory of Linear Electrical Circuits [in Russian], Vysshaya Shkola, Moscow (1987).

    Google Scholar 

  35. A. I. Lur’ye, Analytical Mechanics [in Russian], Nauka, Moscow (1961).

    Google Scholar 

  36. A. J. McConnell, Introduction to Tensor Analysis [Russian translation], Fizmatgiz (1963).

  37. L. I. Mandelshtam, Lecture on Oscillation Theory [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  38. W. S. Massey, Homology and Cohomology Theory, Marcel Dekker, New York (1978).

    MATH  Google Scholar 

  39. E. A. Meyerovich, “Geometric theory of electric circuits,” in: Supplement to G. Kron’s book “Applications of Tensor Analysis in Electrical Engineering” [in Russian], Gosenergoizdat (1955).

  40. V. V. Migulin et al., Foundations of Oscillation Theory [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  41. S. G. Mikhlin, Numerical Realization of Variational Methods [in Russian], Nauka, Moscow (1966).

    Google Scholar 

  42. J. Morris and J. W. Head, “An ‘escalator’ method for numerical solution,” Aircraft Engineering, 14, 312–316 (1942).

    MathSciNet  Google Scholar 

  43. J. Morris and J. W. Head, “The ‘escalator’ process for the solution of Lagrangian frequency equations,” Philos. Mag., 35, 735–759 (1944).

    MATH  MathSciNet  Google Scholar 

  44. J. Morris and J. W. Head, “The ‘escalator’ process for the solution of damped Lagrangian frequency equations,” Philos. Mag., 38, 275–287 (1947).

    MATH  MathSciNet  Google Scholar 

  45. A. A. Mylnikov, “Weinstein function for oscillation systems with a finite number of degrees of freedom,” Bull. Georgian Acad. Sci., 160, No. 1, 35–38 (1999).

    MATH  MathSciNet  Google Scholar 

  46. A. A. Mylnikov, “On the conservatism of eigenvalues of linear oscillatory systems with a finite number of degrees of freedom,” Probl. Prikl. Mekh., No. 1(2), 79–80 (2001).

    Google Scholar 

  47. A. A. Mylnikov, “Derivation of the Weinstein function and its relation to Kron transformations,” Probl. Prikl. Mekh., No. 3(4), 73–75 (2001).

  48. A. A. Mylnikov, “The method of intermediate problems and the tensor theory of circuits,” Probl. Prikl. Mekh., No. 4(5), 64–65 (2001).

  49. A. A. Mylnikov, “Construction of a base oscillatory system in the method of intermediate problems,” Georgian Engineering News, No. 4, 40–42 (2001).

  50. A. A. Mylnikov, “On the calculation of characteristic determinants in the method of intermediate problems,” Georgian Engineering News, No. 4, 43–44 (2001).

  51. A. A. Mylnikov and R. I. Partskhaladze, “A tensor model of oscillatory systems with a great number of degrees of freedom,” Probl. Prikl. Mekh., No. 1, 81–84 (2001).

  52. A. A. Mylnikov and A. I. Prangishvili, “Homological and cohomological invariants of electrical circuits,” Avtomat. Telemekh. (2002).

  53. A. A. Mylnikov and A. I. Prangishvili, “A Weinstein function for LC-circuits,” Avtomat. Telemekh., No. 5, 122–126 (1999).

    Google Scholar 

  54. A. A. Mylnikov and A. I. Prangishvili, “On one property of eigenvalues of linear oscillatory systems of LC-circuits,” Automat. Telemekh., No. 8, 186–189 (2000).

    Google Scholar 

  55. A. A. Mylnikov and A. I. Prangishvili, “On one method of calculation of eigenvalues of multiloop LC-circuits,” Datchiki Sistemy, No. 4(13), 2–5 (2000).

    Google Scholar 

  56. L. R. Neuman and K. S. Demirchian, Theoretical Foundations of Electrical Engineering. Vol. 1 [in Russian], Energiya, Moscow (1966).

    Google Scholar 

  57. M. M. Postnikov, Lectures on Geometry. Linear Algebra [in Russian], Nauka, Moscow (1986).

    Google Scholar 

  58. P. K. Rashevski, Riemann Geometry and Tensor Analysis [in Russian], Gostekhizdat, Moscow (1953).

    Google Scholar 

  59. L. Rayleigh, Theory of Sound, London (1899).

  60. E. J. Routh, Dynamics of a System of Rigid Bodies, New York (1905).

  61. P. A. Samuelson, “A method of determining explicitly the coefficients of the characteristic equation,” Ann. Math. Statist., 13, No. 4, 424–429 (1942).

    Article  MathSciNet  Google Scholar 

  62. E. Skudrzyk, Simple and Complex Vibratory Systems, The Pennsylvania State University, London (1971).

    MATH  Google Scholar 

  63. V. I. Smirnov, Course in Higher Mathematics [in Russian], Gostekhteorizdat, Moscow (1951).

    Google Scholar 

  64. S. P. Strelkov, Introduction to Oscillation Theory [in Russian], Gostekhteorizdat (1950).

  65. Yu. P. Tolstov and Yu. G. Tevryukov, Theory of Electric Circuits [in Russian], Vishaya Shkola, Moscow (1971).

    Google Scholar 

  66. O. Veblen, Analysis Situs, Amer. Math. Soc., Providence, Rhode Island (1931).

    Google Scholar 

  67. Vibrations in Engineering. Vol. 1 [in Russian], Mashinostroyeniye, Moscow (1978).

  68. Vibrations in Engineering. Vol. 2 [in Russian], Mashinostroyeniye, Moscow (1978).

  69. A. Weinstein, “The intermediate problems and the maximum-minimum theory of eigenvalues,” J. Math. Mech., 12 (1963).

  70. A. Weinstein, “Bounds for eigenvalues and the method of intermediate problems,” in: Partial Differential Equations. Continuum Mechanics, University of Wisconsin Press, Madison (1961), pp. 39–53.

    Google Scholar 

  71. A. Weinstein, “On Sturm-Liouville theory and the eigenvalues of intermediate problems,” Numer. Math., 5, 228–245 (1963).

    Article  MathSciNet  Google Scholar 

  72. A. Weinstein, “Some applications of an improved maximum-minimum theory of eigenvalues,” J. Math. Anal., 1, No. 6, 75–91 (1971).

    MathSciNet  Google Scholar 

  73. L. G. Young, Lectures on the Calculus of Variations and Optimal Control Theory, W.B. Saunders, London (1909).

    Google Scholar 

  74. G. V. Zeveke, P. A. Ionkin, A. V. Netushil, and S. V. Strakhov, Foundations of Circuit Theory [in Russian], Energia, Moscow (1965).

    Google Scholar 

  75. R. Zurmuhl, “Matrices,” in: Mathematical Review, Berlin (1950), pp. 12–73.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mylnikov.

Additional information

__________

Translated from Sovremennaya Matematika i Ee Prilozheniya (Contemporary Mathematics and Its Applications), Vol. 41, Topology and Its Applications, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mylnikov, A. Tensor-geometric methods for problems of the circuit theory. J Math Sci 148, 192–258 (2008). https://doi.org/10.1007/s10958-008-0004-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-008-0004-5

Keywords

Navigation