Skip to main content
Log in

Blow-up of solutions of strongly nonlinear equations of pseudoparabolic type

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. R. A. Aleksandryan, “Spectral properties of operators generated by a system of differential equations of the type of S. L. Sobolev,” Tr. Mosk. Mat. Obshch., 9, 455–505 (1980).

    Google Scholar 

  2. J. P. Albert, “On the decay of solutions of the generalized Benjamin-Bona-Mahony equation,” J. Math. Anal. Appl., 141, No. 2, 527–537 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  3. A. B. Al’shin, “Initial-boundary-value problems with moving boundaries for equations of composite type,” Zh. Vychisl. Mat. Mat. Fiz., 42, No. 2, 171–184 (2002).

    MATH  MathSciNet  Google Scholar 

  4. A. B. Al’shin, E. A. Al’shina, A. A. Boltnev, O. A. Kacher, and P. V. Koryakin, “The numerical solution of initial-boundary-value problems for the Sobolev-type equations on quasi-uniform grids,” Zh. Vychisl. Mat. Mat. Fiz., 44, No. 3, 493–513 (2004).

    MATH  MathSciNet  Google Scholar 

  5. A. B. Al’shin, E. A. Al’shina, N. N. Kalitkin, and B. V. Rogov, Computations on Quasi-Uniform Grids [in Russian], Fizmatlit, Moscow (2005).

    Google Scholar 

  6. A. B. Al’shin and M. O. Korpusov, “The application of dynamic potentials for the nonclassical partial differential equations of composite type,” in: Proc. Int. Conf. “New Trends in Potential Theory and Applications,” Bielefeld, Germany, March 26–30 (2001).

  7. A. B. Al’shin, Yu. D. Pletner, and A. G. Sveshnikov, “The solvability of an external initial and boundary-value problem for the ion-acoustic wave equation,” Zh. Vychisl. Mat. Mat. Fiz., 36, No. 10, 180–189 (1996).

    MathSciNet  Google Scholar 

  8. A. B. Al’shin, Yu. D. Pletner, and A. G. Sveshnikov, “Unique solvability of the Dirichlet problem for the ion-sound wave equation in plasma,” Dokl. Ross. Akad. Nauk, 361, No. 6 749–751 (1998).

    MATH  MathSciNet  Google Scholar 

  9. A. B. Al’shin, M. O. Korpusov, Yu. D. Pletner, and A. G. Sveshnikov, “Nonclassical partial differential equations of composite type as mathematical models of waves in media with an anisotropic dispersion,” in: Proc. 3rd Eur. Math. Congr., Barcelona, July 10–14 (2000).

  10. A. B. Al’shin, M. O. Korpusov, Yu. D. Pletner, and A. G. Sveshnikov, “Partial differential equations of composite type as mathematical models of wave processes in media with anisotropic dispersion” [in Russian], in: Proc. VIII Belarus Math. Conf., June 19–24, 2000, Minsk (2000), p. 173.

  11. A. B. Al’shin, M. O. Korpusov, Yu. D. Pletner, and A. G. Sveshnikov, “Sobolev equations as mathematical models of processes in media with a nonisotropic dispersion,” in: First SIAM-EMS Conference AMCW, 2001, Sept. 2–6, Berlin (2001).

  12. A. B. Al’shin, M. O. Korpusov, Yu. D. Pletner, and A. G. Sveshnikov, “New problems for equations of composite type,” in: Proc. Int. Math. Congr. Beijing, August 20–28 (2002), p. 207.

  13. H. Amann, “Parabolic evolution equations and nonlinear boundary conditions,” J. Differ. Equations, 72, 201–269 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  14. H. Amann and M. Fila, “A Fujita-type theorem for the Laplace equation with a dynamical boundary condition,” Acta Math. Univ. Comen., 66, No. 2, 321–328 (1997).

    MATH  MathSciNet  Google Scholar 

  15. V. N. Astratov, A. V. Il’inskii, and V. A. Kiselev, “Stratification of volume charge in screening of fields in crystals,” Fiz. Tverdogo Tela, 26, No. 9, 2843–2851 (1984).

    Google Scholar 

  16. J. Avrin and J. A. Goldstein, “Global existence for the Benjamin-Bona-Mahony equation in arbitrary dimensions,” Nonlinear Anal., 9, No. 8, 861–865 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  17. B. Bagchi and C. Venkatesan, “Exploring solutions of nonlinear Rossby waves in shallow water equations,” J. Phys. Soc. Jpn., 65, No. 8, 2717–2721 (1996).

    Article  MATH  Google Scholar 

  18. C. Baiocchi and A. Capelo, Variational and Quasi-Variational Inequalities. Applications to Free-Boundary Problems, Wiley, Chichester (1984).

    Google Scholar 

  19. J. Ball, “Stability theory for an extensible beam,” J. Differ. Equations, 14, 399–418 (1973).

    Article  MATH  Google Scholar 

  20. G. I. Barenblatt, Yu. P. Zheltov, and I. N. Kochina, “Basic concepts of the theory of seepage of homogeneous liquids in fissured rocks (strata),” Prikl. Mat. Mekh., 24, No. 5, 852–864 (1960).

    Google Scholar 

  21. F. G. Bass, V. S. Bochkov, and Yu. S. Gurevich, Electrons and Phonons in Bounded Semiconductors [in Russian], Nauka, Moscow (1984).

    Google Scholar 

  22. J. Bebernes and A. A. Lacey, “Global existence and finite time blow-up for a class of nonlocal parabolic problems,” Adv. Differ. Equations, 2, 927–954 (1997).

    MATH  MathSciNet  Google Scholar 

  23. H. Begehr, “Entire solutions of quasilinear pseudoparabolic equations,” Demonstr. Math., 18, No. 3, 673–685 (1985).

    MATH  MathSciNet  Google Scholar 

  24. H. Begehr and D. Q. Dai, “Initial-boundary-value problem for nonlinear pseudoparabolic equations,” Complex Variables, Theory Appl., 18, Nos. 1–2, 33–47 (1992).

    MATH  MathSciNet  Google Scholar 

  25. T. B. Benjamin, J. L. Bona, and J. J. Mahony, “Model equations for long waves in nonlinear dispersive systems,” Philos. Trans. Royal Soc. London, Ser. A, 272, 47–78 (1972).

    Article  MATH  MathSciNet  Google Scholar 

  26. P. Biler, “Long-time behavior of the generalized Benjamin-Bona-Mahony equation in two space dimensions,” Differ. Integral Equations, 5, No. 4, 891–901 (1992).

    MATH  MathSciNet  Google Scholar 

  27. V. L. Bonch-Bruevich and S. G. Kalashnikov, Physics of Semiconductors [in Russian], Nauka, Moscow (1990).

    Google Scholar 

  28. V. L. Bonch-Bruevich, I. P. Zvyagin, and A. G. Mironov, Domain Electric Instability in Semiconductors [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  29. V. A. Borovikov, “Asymptotic of the Green function of the equation of internal waves as t →+∞,” Dokl. Akad. Nauk SSSR, 313, No. 2, 313–316 (1990).

    MathSciNet  Google Scholar 

  30. F. P. Bretherton, “The time-dependent motion due to a cylinder moving in an unbounded rotating or stratified fluid,” J. Fluid Mech., 28, 545–570 (1967).

    Article  MATH  Google Scholar 

  31. R. Camassa and D. D. Holm, “An integrable shallow water equation with peaked solitons,” Phys. Rev. Lett., 71, No. 11, 1661–1664 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  32. Yu. Chen, “Remark on the global existence for the generalized Benjamin-Bona-Mahony equations in arbitrary dimension,” Appl. Anal., 30, Nos. 1–3, 1–15 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  33. M. Chipot, M. Fila, and P. Quittner, “Stationary solutions, blow-up, and convergence to stationary solutions for semilinear parabolic equations with nonlinear boundary conditions,” Acta. Math. Univ. Comen., 60, 35–103 (1991).

    MATH  MathSciNet  Google Scholar 

  34. S. K. Chung and S. N. Ha, “Finite-element Galerkin solutions for the Rosenau equation,” J. Appl. Anal., 54, Nos. 1–2, 39–56 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  35. S. K. Chung and A. K. Pani, “Numerical methods for the Rosenau equation,” J. Appl. Anal., 77, Nos. 3–4, 351–369 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  36. P. C. Clemmow and J. P. Dougherty, Electrodynamics of Particles and Plasmas, Addison-Wesley, Redwood City, CA (1990).

    Google Scholar 

  37. B. D. Coleman, R. J. Duffin, V. J. Mizel, “Instability, uniqueness, and nonexistence theorems for the equation u t = u xx u xxt on strip,” Arch. Rat. Mech. Anal., 19, 100–116 (1965).

    MATH  MathSciNet  Google Scholar 

  38. G. V. Demidenko, “Cauchy problem for pseudoparabolic systems,” Sib. Mat. Zh., 38, No. 6, 1251–1266 (1997).

    MATH  MathSciNet  Google Scholar 

  39. G. V. Demidenko and S. V. Uspenskii, Implicit Differential Equations and Systems [in Russian], Novosibirsk (1998).

  40. B. P. Demidovich, Lectures on Mathematical Theory of Stability [in Russian], Nauka, Moscow (1967).

    Google Scholar 

  41. E. DiBenedetto, Degenerate Parabolic Equations, Springer-Verlag, New York (1993).

    MATH  Google Scholar 

  42. E. DiBenedetto and M. Pierre, “On the maximum principle for pseudoparabolic equations,” Indiana Univ. Math. J., 30, No. 6, 821–854 (1981).

    Article  MATH  MathSciNet  Google Scholar 

  43. A. S. Dostovalova and S. T. Simakov, “The fundamental solution of the model equation of an incompressible stratified liquid,” Zh. Vychisl. Mat. Mat. Fiz., 34, No. 10, 1528–1534 (1994).

    MathSciNet  Google Scholar 

  44. N. Dunford and J. T. Schwartz, Linear Operators. Part I: General Theory, Wiley, New York (1988).

    MATH  Google Scholar 

  45. M. I. D’yachenko and P. L. Ul’yanov, Measures and Integrals [in Russian], Faktorial, Moscow (1998).

    Google Scholar 

  46. E. S. Dzektser, “On a generalization of the equation of motion of underground water with free surface,” Dokl. Akad. Nauk SSSR, 202, No. 5, 1031–1033 (1972).

    Google Scholar 

  47. T. D. Dzhuraev, Boundary-Value Problems for Equations of Mixed and Mixed-Composite Types [in Russian], Fan, Tashkent (1979).

    MATH  Google Scholar 

  48. I. E. Egorov, “Solvability of a boundary-value problem for a higher-order equation of mixed type,” Differ. Uravn., 23, No. 9, 1560–1567 (1987).

    Google Scholar 

  49. I. E. Egorov and V. E. Fedorov, Nonclassical Higher-Order Equations of Mathematical Physics [in Russian], Novosibirsk (1995).

  50. Yu. V. Egorov and V. A. Kondratiev, “On blow-up solutions for parabolic equations of second order,” in: Differential Equations, Asymptotic Analysis, and Mathematical Physics (M. Demuth and B.-W. Shulxe, eds.), Akademie Verlag, Berlin (1997), pp. 77–84.

    Google Scholar 

  51. I. E. Egorov, S. G. Pyatkov, and S. V. Popov, Nonclassical Differential-Operator Equations [in Russian], Novosibirsk (2000).

  52. J. Escher, “Global existence and nonexistence for semilinear parabolic systems with nonlinear boundary conditions,” Math. Anal., 284, 285–305 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  53. L. D. Faddeev and L. A. Takhtadzhyan, Hamiltonian Methods in the Theory of Solitons, Springer-Verlag, Berlin (1987).

    MATH  Google Scholar 

  54. A. Favini and A. Yagi, Degenerate Differential Equations in Banach Spaces, Marcel Dekker, New York-Basel-Hong Kong (1999).

    MATH  Google Scholar 

  55. V. E. Fedorov, Semigroups and Groups of Operators with Kernels [in Russian], Chelyabinsk (1998).

  56. V. E. Fedorov, “Degenerate strongly continuous semigroups of operators,” Algebra Anal., 12, No. 3, 173–200 (2001).

    Google Scholar 

  57. V. N. Fedosov, “Low-frequency fluctuations and relaxation in semiconductor-ferroelectrics,” Fiz. Tekhn. Poluprovod., 17, No. 5, 941–944 (1983).

    Google Scholar 

  58. M. Fila, “Boundedness of global solutions for the heat equation with nonlinear boundary conditions,” Comment. Math. Univ. Carol., 30, 179–181 (1989).

    MathSciNet  Google Scholar 

  59. M. Fila and H. A. Levine, “Quenching on the boundary,” Nonlinear Anal., 21, 795–802 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  60. A. Fridman, Parabolic Partial Differential Equations [in Russian], Mir, Moscow (1968).

    Google Scholar 

  61. H. Fujita, “On the blowing up of solutions to the Cauchy problem for u t u+u 1+α,” J. Fac. Univ. Tokyo, Sec. IA, 13, 109–124 (1966).

    MATH  Google Scholar 

  62. A. S. Furman, “On the stratification of volume charge in transition processes in semiconductors,” Fiz. Tverdogo Tela, 28, No. 7, 2083–2090 (1986).

    Google Scholar 

  63. S. A. Gabov, New Problems in the Mathematical Theory of Waves [in Russian], Nauka, Moscow (1998).

    Google Scholar 

  64. S. A. Gabov, Introduction to the Theory of Nonlinear Waves [in Russian], Moscow State Univ., Moscow (1988).

    MATH  Google Scholar 

  65. S. A. Gabov, “On the Whitham equation,” Dokl. Akad. Nauk SSSR, 242, No. 5, 993–996 (1978).

    MathSciNet  Google Scholar 

  66. S. A. Gabov, “On the blow-up of solitary waves described by the Whitham equation,” Dokl. Akad. Nauk SSSR, 246, No. 6, 1292–1295 (1979).

    MathSciNet  Google Scholar 

  67. S. A. Gabov, G. Yu. Malysheva, and A. G. Sveshnikov, “On an equation of composite type connected with oscillations of a compressible stratified liquid,” Differ. Uravn., 19, No. 7, 1171–1180 (1983).

    MathSciNet  Google Scholar 

  68. S. A. Gabov and A. G. Sveshnikov, Linear Problems of the Theory of Nonstationary Internal Waves [in Russian], Nauka, Moscow (1990).

    Google Scholar 

  69. S. A. Gabov and A. A. Tikilyainen, “On a third-order differential equation,” Zh. Vychisl. Mat. Mat. Fiz., 27, No. 7, 1100–1105 (1987).

    MathSciNet  Google Scholar 

  70. S. A. Gabov and P. N. Vabishchevich, “Angular potential for a divergent elliptic operator,” Dokl. Akad. Nauk SSSR, 242, No. 4, 835–838 (1978).

    MathSciNet  Google Scholar 

  71. H. Gajewski, K. Groger, and K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie-Verlag, Berlin (1974).

    MATH  Google Scholar 

  72. V. A. Galaktionov, “On a boundary-value problem for the nonlinear parabolic equation u t u 1+σ+ u β,” Differ. Uravn., 17, No. 5, 836–842 (1981).

    MATH  MathSciNet  Google Scholar 

  73. V. A. Galaktionov, “On conditions for nonexistence of global solutions of a certain class of quasilinear parabolic equations,” Zh. Vychisl. Mat. Mat. Fiz., 22, No. 2, 322–338 (1982).

    MATH  MathSciNet  Google Scholar 

  74. V. A. Galaktionov, “On Cauchy problems nonsolvable in the large for quasi-linear parabolic equations,” Zh. Vychisl. Mat. Mat. Fiz., 23, No. 5, 1072–1087 (1983).

    MATH  MathSciNet  Google Scholar 

  75. V. A. Galaktionov and J. L. Vazquez, “Necessary and sufficient conditions for complete blow-up and existence for one-dimensional quasilinear heat equations,” Arch. Ration. Mech. Anal., 129, 225–244 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  76. V. A. Galaktionov and J. L. Vazquez, “Continuation of blow-up solutions of nonlinear heat equations in several space dimensions,” Commun. Pure Appl. Math., 50, 1–67 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  77. S. A. Gal’pern, “Cauchy problems for general systems of linear partial differential equations,” Tr. Mosk. Mat. Obshch., 9, 401–423 (1960).

    MathSciNet  Google Scholar 

  78. S. A. Gal’pern, “Cauchy problem for the Sobolev equation,” Sib. Mat. Zh., 4, No. 4, 758–773 (1963).

    MATH  MathSciNet  Google Scholar 

  79. H. Gao and T. F. Ma, “Global solutions for a nonlinear wave equation with the p-Laplacian operator,” Electron. J. Qual. Theory Differ. Equations, 11, 1–13 (1999).

    MathSciNet  Google Scholar 

  80. C. S. Gardner, J. M. Green, M. D. Kruskal, and R. M. Miura, “Method for solving the Korteweg-de Vries equation,” Phys. Rev. Lett., 19, No. 19, 1095–1097 (1967).

    Article  MATH  Google Scholar 

  81. D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin (1983).

    MATH  Google Scholar 

  82. V. L. Ginzburg and A. A. Rukhadze, Waves in Magnetoactive Plasma [in Russian], Nauka, Moscow (1970).

    Google Scholar 

  83. A. L. Gladkov, “Unique solvability of the Cauchy problem for certain quasi-linear pseudoparabolic equations,” Mat. Zametki, 60, No. 3, 356–362 (1996). 35K15

    MathSciNet  Google Scholar 

  84. J. A. Goldstein, R. Kajikiya, and S. Oharu, “On some nonlinear dispersive equations in several space variables,” Differ. Integral Equations, 3, No. 4, 617–632 (1990).

    MATH  MathSciNet  Google Scholar 

  85. I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Sums, Series, and Products [in Russian], Nauka, Moscow (1971).

    Google Scholar 

  86. J. M. Greenberg, R. C. MacCamy, and V. J. Mizel, “On the existence, uniqueness, and stability of solutions of the equation σ′(u x )u xx u xxt 0 u tt ,” J. Math. Mech., 17, 707–728 (1968).

    MATH  MathSciNet  Google Scholar 

  87. B. Guo and C. Miao, “On inhomogeneous GBBM equations,” J. Partial Differ. Equations, 8, No. 3, 193–204 (1995).

    MATH  MathSciNet  Google Scholar 

  88. C. Guowang and W. Shubin, “Existence and nonexistence of global solutions for nonlinear hyperbolic equations of higher order,” Comment. Math. Univ. Carolinae, 36, No. 3, 475–487 (1995).

    MATH  Google Scholar 

  89. A. G. Gurevich and G. A. Melkov, Magnetic Oscillations and Waves [in Russian], Nauka, Moscow (1994).

    Google Scholar 

  90. N. M. Gyunter, Theory of Potentials and Its Application to Problems of Mathematical Physics [in Russian], Gostekhizdat, Moscow (1953).

    Google Scholar 

  91. T. Hagen and J. Turi, “On a class of nonlinear BBM-like equations,” Comput. Appl. Math., 17, No. 2, 161–172 (1998).

    MATH  MathSciNet  Google Scholar 

  92. E. Hille and R. S. Phillips, Functional Analysis and Semigroups, Amer. Math. Soc., Providence, Rhode Island (1957).

    MATH  Google Scholar 

  93. B. Hu and H.-M. Yin, “The profile near blow-up time for solutions of the heat equation with a nonlinear boundary condition,” Trans. Amer. Math. Soc., 346, No. 1, 117–135 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  94. A. Jeffrey and J. Engelbrecht, “Nonlinear dispersive waves in a relaxing medium,” Wave Motion, 2, No. 3, 255–266 (1980).

    Article  MATH  MathSciNet  Google Scholar 

  95. E. I. Kaikina, P. I. Naumkin, and I. A. Shishmarev, Periodic problem for a model nonlinear evolution equation, Preprint (2000).

  96. F. F. Kamenets, V. P. Lakhin, and A. B. Mikhailovskii, “Nonlinear electron gradient waves,” Fiz. Plasmy, 13, No. 4, 412–416 (1987).

    Google Scholar 

  97. L. V. Kantorovich and G. P. Akilov, Functional Analysis [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  98. B. V. Kapitonov, “The potential theory for the equation of small oscillations of a rotating fluid,” Mat. Sb. 109, No. 4, 607–628 (1979).

    MathSciNet  MATH  Google Scholar 

  99. S. Kaplan, “On the growth of solutions of quasi-linear parabolic equations,” Commun. Pure Appl. Math., 16, 305–330 (1963).

    Article  MATH  Google Scholar 

  100. G. Karch, “Asymptotic behavior of solutions to some pseudoparabolic equations,” Math. Methods Appl. Sci., 20, No. 3, 271–289 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  101. M. Kirane, E. Nabana, and S. I. Pokhozhaev, “The absence of solutions of elliptic systems with dynamic boundary conditions,” J. Differ. Equations, 38, No. 6, 808–815 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  102. G. Kirchhoff, Vorlesungen uber Mechanik, Teubner, Leipzig (1883).

    Google Scholar 

  103. C. Knessl and J. B. Keller, “Rossby waves,” Stud. Appl. Math., 94, No. 4, 359–376 (1995).

    MATH  MathSciNet  Google Scholar 

  104. M. V. Komarov and I. A. Shishmarev, “A periodic problem for the Landau-Ginzburg equation,” Mat. Zametki, 72, No. 2, 227–235 (2002).

    MathSciNet  Google Scholar 

  105. N. D. Kopachevskii, Small motions and normal oscillations of a system of massive, viscous rotating liquids [in Russian], Preprint No. 38–71, Khar’kov (1978).

  106. N. D. Kopachevskii and A. N. Temnov, “Oscillations of a stratified liquid in a basin of arbitrary shape,” Zh. Vychisl. Mat. Mat. Fiz., 26, No. 5, 734–755 (1986).

    MathSciNet  Google Scholar 

  107. M. O. Korpusov, “Blow-up in a finite time of the solution of the Cauchy problem for the pseudoparabolic equation Au t = F(u),” Differ. Uravn., 38, No. 12, 1–6 (2002).

    MathSciNet  Google Scholar 

  108. M. O. Korpusov, “Blow-up of solutions of the pseudoparabolic equation with a time derivative of a nonlinear elliptic operator,” Zh. Vychisl. Mat. Mat. Fiz., 42, No. 12, 1788–1795 (2002).

    MATH  MathSciNet  Google Scholar 

  109. M. O. Korpusov, “Global solvability of pseudoparabolic nonlinear equations and blow-up of their solutions,” Zh. Vychisl. Mat. Mat. Fiz., 42, No. 6, 849–866 (2002).

    MATH  MathSciNet  Google Scholar 

  110. M. O. Korpusov, “Global solvability of an initial-boundary-value problem for a system of semilinear equations,” Zh. Vychisl. Mat. Mat. Fiz., 42, No. 7, 1039–1050 (2002).

    MATH  MathSciNet  Google Scholar 

  111. M. O. Korpusov, “Global and local solvability of nonlinear pseudoparabolic equations and some equations used in semiconductor physics,” in: Proc. Conf. “Lomonosov Readings,” Moscow State Univ., Moscow (2002), pp. 50–53.

    Google Scholar 

  112. M. O. Korpusov, “Global solvability conditions of the Cauchy problem for semilinear pseudoparabolic equation,” Zh. Vychisl. Mat. Mat. Fiz., 43, No. 8, 1210–1222 (2003).

    MATH  MathSciNet  Google Scholar 

  113. M. O. Korpusov, “Blow-up of solutions of strongly nonlinear Sobolev-type equations,” Izv. Ross. Akad. Nauk (in press).

  114. M. O. Korpusov, “Conditions for global solvability of an initial-boundary-value problem for a nonlinear pseudoparabolic equation,” Differ. Uravn. (in press).

  115. M. O. Korpusov, “On the blow-up of solutions of initial-boundary-value problems for an inhomogeneous pseudoparabolic equation,” Differ. Uravn. (in press).

  116. M. O. Korpusov, Yu. D. Pletner, and A. G. Sveshnikov, “Unsteady waves in a stratified fluid excited by the variation of the normal velocity component on a line segment,” Zh. Vychisl. Mat. Mat. Fiz., 37, No. 9, 1112–1121 (1997).

    MATH  MathSciNet  Google Scholar 

  117. M. O. Korpusov, Yu. D. Pletner, and A. G. Sveshnikov, “Unsteady waves in anisotropic dispersive media,” Zh. Vychisl. Mat. Mat. Fiz., 39, No. 6, 1006–1022 (1999).

    MathSciNet  Google Scholar 

  118. M. O. Korpusov, Yu. D. Pletner, and A. G. Sveshnikov, “On quasi-steady processes in conducting nondispersive media,” Zh. Vychisl. Mat. Mat. Fiz., 40, No. 8, 1237–1249 (2000).

    MathSciNet  Google Scholar 

  119. M. O. Korpusov and A. G. Sveshnikov, “Blow-up in a finite time of the solution of the initial-boundary-value problem for a semilinear composite-type equation,” Zh. Vychisl. Mat. Mat. Fiz., 40, No. 11, 1716–1724 (2000).

    MathSciNet  Google Scholar 

  120. M. O. Korpusov and A. G. Sveshnikov, “Energy estimate of the solution to a nonlinear pseudoparabolic equation as t → ∞,” Zh. Vychisl. Mat. Mat. Fiz., 42, No. 8, 1200–1206 (2002).

    MATH  MathSciNet  Google Scholar 

  121. M. O. Korpusov and A. G. Sveshnikov, “Global and local solvability of nonlinear pseudoparabolic equations,” in: Proc. Int. Conf. “Differential and Functional-Differential Equations,” Moscow (2002), p. 56.

  122. M. O. Korpusov and A. G. Sveshnikov, “Three-dimensional nonlinear evolutionary pseudoparabolic equations in mathematical physics,” Zh. Vychisl. Mat. Mat. Fiz., 43, No. 12, 1835–1869 (2003).

    MATH  MathSciNet  Google Scholar 

  123. M. O. Korpusov and A. G. Sveshnikov, “On the solvability of strongly nonlinear pseudoparabolic equations with double nonlinearity,” Zh. Vychisl. Mat. Mat. Fiz., 43, No. 7, 987–1004 (2003).

    MATH  MathSciNet  Google Scholar 

  124. M. O. Korpusov and A. G. Sveshnikov, “On the existence of a solution of the Laplace equation with a nonlinear dynamic boundary condition,” Zh. Vychisl. Mat. Mat. Fiz., 43, No. 1, 95–110 (2003).

    MathSciNet  Google Scholar 

  125. M. O. Korpusov and A. G. Sveshnikov, “Three-dimensional nonlinear evolutionary pseudoparabolic equations in mathematical physics. Part 2,” Zh. Vychisl. Mat. Mat. Fiz., 44, No. 11, 2041–2048 (2004).

    MATH  MathSciNet  Google Scholar 

  126. M. O. Korpusov and A. G. Sveshnikov, “On the blow-up in a finite time of solutions of initial-boundary-value problems for pseudoparabolic equations with the pseudo-Laplacian,” Zh. Vychisl. Mat. Mat. Fiz., 45, No. 2, 272–286 (2005).

    MATH  MathSciNet  Google Scholar 

  127. M. O. Korpusov and A. G. Sveshnikov, “On the blow-up of solutions of semilinear pseudoparabolic equations with rapidly growing nonlinearities,” Zh. Vychisl. Mat. Mat. Fiz., 45, No. 1, 145–155 (2005).

    MATH  MathSciNet  Google Scholar 

  128. M. O. Korpusov and A. G. Sveshnikov, “Blow-up of solutions of a strongly nonlinear pseudoparabolic equation with double nonlinearity,” Mat. Zametki (in press).

  129. M. O. Korpusov and A. G. Sveshnikov, “Blow-up of solutions of abstract Cauchy problems for nonlinear differential-operator equations,” Dokl. Ross. Akad. Nauk (in press).

  130. M. O. Korpusov and A. G. Sveshnikov, “Blow-up of solutions of abstract Cauchy problems for differential equations with nonlinear operator coefficients,” Fund. Prikl. Mat. (in press).

  131. M. O. Korpusov and A. G. Sveshnikov, “Blow-up of solutions of nonlinear Sobolev-type wave equations with cubic sources,” Mat. Zametki (in press).

  132. M. O. Korpusov and A. G. Sveshnikov, “On a nonlinear, nonlocal pseudoparabolic equation of Kirchho. type,” Izv. Ross. Akad. Nauk (in press).

  133. M. O. Korpusov and A. G. Sveshnikov, “On the blow-up of solutions of initial-boundary-value problems for a nonlinear nonlocal pseudoparabolic equation,” Zh. Vychisl. Mat. Mat. Fiz. (in press).

  134. A. G. Kostyuchenko and G. I. Eskin, “Cauchy problem for Sobolev-Gal’pern equations,” Tr. Mosk. Mat. Obshch., 10, 273–285 (1961).

    Google Scholar 

  135. A. I. Kozhanov, “Parabolic equations with nonlocal nonlinear source,” Sib. Mat. Zh., 35, No. 5, 1062–1073 (1994).

    MathSciNet  Google Scholar 

  136. A. I. Kozhanov, “Initial-boundary-value problem for generalized Boussinesq-type equations with nonlinear source,” Mat. Zametki, 65, No. 1, 70–75 (1999).

    MathSciNet  Google Scholar 

  137. A. I. Kozhanov, Boundary-Value Problems for Equations of Mathematical Physics of Odd Order [in Russian], Novosibirsk (1990).

  138. A. I. Kozhanov, “On properties of solutions for a class of pseudoparabolic equations,” Dokl. Ross. Akad. Nauk, 326, No. 5, 781–786 (1992).

    Google Scholar 

  139. V. F. Kozlov, “Generation of Rossby waves in nonsteady barotropic ocean flow under perturbations,” Izv. Akad. Nauk SSSR, Ser. Fiz. Atmosf. Okeana, 16, No. 4, 410–416 (1980).

    Google Scholar 

  140. A. V. Krasnozhon and Yu. D. Pletner, “The behavior of solutions of the Cauchy problem for the gravitational-gyroscopic wave equation,” Zh. Vychisl. Mat. Mat. Fiz., 34, No. 1, 78–87 (1994).

    MathSciNet  Google Scholar 

  141. S. G. Krein, Linear Differential Equations in Banach Spaces [in Russian], Nauka, Moscow (1967).

    Google Scholar 

  142. G. S. Krinchik, Physics of Magnetic Effects [in Russian], Moscow State Univ., Moscow (1976).

    Google Scholar 

  143. P. A. Krutitskii, “Nonstationary planetary waves in semirestricted channels,” Zh. Vychisl. Mat. Mat. Fiz., 27, No. 12, 1824–1833 (1987).

    MathSciNet  Google Scholar 

  144. P. A. Krutitskii, “The first initial-boundary value problem for the gravity-inertia wave equation in a multiply connected domain,” Zh. Vychisl. Mat. Mat. Fiz., 37, No. 1, 117–128 (1997).

    MathSciNet  MATH  Google Scholar 

  145. V. R. Kudashev, A. B. Mikhailovskii, and S. E. Sharapov, “On the nonlinear theory of drift mode induced by toroidality,” Fiz. Plasmy, 13, No. 4, 417–421 (1987).

    Google Scholar 

  146. L. D. Landau and E. M. Lifshits, Electrodynamics of Continuous Media [in Russian], Nauka, Moscow (1992).

    Google Scholar 

  147. G. G. Laptev, “On the absence of solutions for a class of singular semilinear differential inequalities,” Tr. Mat. Inst. Steklova, 232, 223–235 (2001).

    MathSciNet  Google Scholar 

  148. H. Y. Lee, M. R. Ohm, and J. Y. Shin, “The convergence of fully discrete Galerkin approximations of the Rosenau equation,” Korean J. Comput. Appl. Math., 6, No. 1, 1–13 (1999).

    MATH  MathSciNet  Google Scholar 

  149. H. A. Levine, “Some nonexistence and instability theorems for solutions of formally parabolic equations of the form Pu t = −Au + F(u),” Arch. Ration. Mech. Anal., 51, 371–386 (1973).

    Article  MATH  Google Scholar 

  150. H. A. Levine, “The role of critical exponents in blow-up problems,” SIAM Rev., 32, 262–288 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  151. H. A. Levine, “Quenching and beyond: A survey of recent results,” in: GAKUTO Int. Ser., Math. Sci. Appl. Nonlinear Math. Problems in Industry, Vol. 2 (H. Kawarada et al., eds.), Gakkotosho, Tokyo (1993), pp. 501–512.

    Google Scholar 

  152. H. A. Levine and M. Fila, “On the boundedness of global solutions of abstract semilinear parabolic equations,” J. Math. Anal. Appl., 216, 654–666 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  153. H. A. Levine, S. R. Park, and J. Serrin, “Global existence and nonexistence theorems for quasilinear evolution equations of formally parabolic type,” J. Differ. Equations, 142, 212–229 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  154. H. A. Levine, S. R. Park, and J. Serrin, “Global existence and global nonexistence of solutions of the Cauchy problem for a nonlinear damped wave equation,” J. Math. Anal. Appl., 228, 181–205 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  155. H. A. Levine and L. E. Payne, “Some nonexistence theorems for initial-boundary-value problems with nonlinear boundary constraints,” Proc. Amer. Math. Soc., 46, No. 7, 277–281 (1974).

    Article  MATH  MathSciNet  Google Scholar 

  156. H. A. Levine and L. E. Payne, “Nonexistence theorems for the heat equation with nonlinear boundary conditions and for the porous medium equation backward in time,” J. Differ. Equations, 16, 319–334 (1974).

    Article  MATH  MathSciNet  Google Scholar 

  157. H. A. Levine and J. Serrin, “Global nonexistence theorems for quasilinear evolution equations with dissipation,” Arch. Ration. Mech. Anal., 137, 341–361 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  158. Z. Li, “On the initial-boundary-value problem for the system of multi-dimensional generalized BBM equations,” Math. Appl., 3, No. 4, 71–80 (1990).

    MathSciNet  Google Scholar 

  159. E. M. Lifshits and L. P. Pitaevskii, Physical Kinetics [in Russian], Mauka, Moscow (1979).

    Google Scholar 

  160. P. Lindqvist, “On the equation div(|∇u|p−2u) + λ|u|p−2 u = 0,” Proc. Amer. Math. Soc., 109, 157–164 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  161. J. L. Lions, Quelques méthodes de résolution des problémes aux limites non liné aires, Gauthier-Villars, Paris (1969).

    Google Scholar 

  162. J. L. Lions and E. Magenes, Nonhomogeneous Boundary-Value Problems and Applications, Springer-Verlag, Berlin-Heidelberg-New York (1973).

    Google Scholar 

  163. L. Liu and M. Mei, “A better asymptotic profile of Rosenau-Burgers equation,” J. Appl. Math. Comput., 131, No. 1, 147–170 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  164. A. M. Lyapunov, Works on the Theory of Potentials [in Russian], URSS, Moscow (2004).

    Google Scholar 

  165. S. I. Lyashko, Generalized Control in Linear Systems [in Russian], Naukova Dumka, Kiev (1998).

    Google Scholar 

  166. S. I. Lyashko, “Approximate solution of pseudoparabolic equations,” Zh. Vychisl. Mat. Mat. Fiz., 31, No. 12, 1906–1911 (1991).

    MATH  MathSciNet  Google Scholar 

  167. L. A. Lyusternik and L. G. Shnirel’man, “Topological methods in variational problems,” Tr. Inst. Mat. Mekh. MGU, 1–68 (1930).

  168. V. N. Maslennikova, Partial Differential Equations [in Russian], Moscow (1997).

  169. V. N. Maslennikova, Mathematical aspects of the hydrodynamics of rotating liquids and systems of Sobolev type [in Russian], Thesis, Novosibirsk (1971).

  170. V. N. Maslennikova, “Explicit solution of the Cauchy problem for a system of partial differential equations,” Izv. Akad. Nauk SSSR, Ser. Mat., 22, No. 1, 135–160 (1958).

    MATH  MathSciNet  Google Scholar 

  171. V. N. Maslennikova, “Explicit representations and a priori estimates of solutions of boundary-value problems for the Sobolev system,” Sib. Mat. Zh., 9, No. 5, 1182–1198 (1968).

    MATH  MathSciNet  Google Scholar 

  172. V. N. Maslennikova and M. E. Bogovskii, “Asymptotic behavior of solutions of boundary-value problems for the Sobolev system in a half-space and the boundary layer,” in: Mathematical Analysis and Related Topics [in Russian], Nauka, Novosibirsk (1978), pp. 109–152.

    Google Scholar 

  173. V. P. Maslov, “On the existence of a solution, decreasing as t → ∞, of the Sobolev equation for small oscillations of a rotating fluid in a cylindrical domain,” Sib. Mat. Zh., 9, No. 6, 1351–1359 (1968).

    Google Scholar 

  174. K. Maurin, Methods of Hilbert Spaces, Warszawa (1967).

  175. L. A. Medeiros and M. G. Perla, “On global solutions of a nonlinear dispersive equation of Sobolev type,” Bol. Soc. Bras. Mat., 9, No. 1, 49–59 (1978).

    Article  MATH  Google Scholar 

  176. M. Mei, “Long-time behavior of solution for Rosenau-Burgers equation, II,” J. Appl. Anal., 68, Nos. 3–4, 333–356 (1998).

    MATH  Google Scholar 

  177. M. Mei, “L q-decay rates of solutions for Benjamin-Bona-Mahony-Burgers equations,” J. Differ. Equations, 158, No. 2, 314–340 (1999).

    Article  MATH  Google Scholar 

  178. A. B. Mikhailovskii, Theory of Plasma Instabilities [in Russian], Vol. 1, Atomizdat, Moscow (1975).

    Google Scholar 

  179. A. B. Mikhailovskii, Theory of Plasma Instabilities [in Russian], Vol. 1, Atomizdat, Moscow (1977).

    Google Scholar 

  180. E. Mitidieri and S. I. Pokhozhaev, “A priori estimates and blow-up of solutions of nonlinear partial differential equations and inequalities,” Tr. Mat. Inst. Steklova, 234, (2001).

  181. P. I. Naumkin, “Large-time asymptotic behaviour of a step for the Benjamin-Bona-Mahony-Burgers equation,” Proc. Roy. Soc. Edinburgh, Sec. A, 126, No. 1, 1–18 (1996).

    MATH  MathSciNet  Google Scholar 

  182. P. I. Naumkin and I. A. Shishmarev, “Inverting of waves for the Whitham equation with singular kernel,” Differ. Uravn., 21, No. 10, 1775–1790 (1985).

    MATH  MathSciNet  Google Scholar 

  183. P. I. Naumkin and I. A. Shishmarev, Nonlinear Nonlocal Equations in the Theory of Waves, Transl. Math. Monogr., 133, Amer. Math. Soc., Providence, Rhode Island (1994).

    MATH  Google Scholar 

  184. P. I. Naumkin and I. A. Shishmarev, “Asymptotics as t → ∞ of the solutions of nonlinear equations with nonsmall initial perturbations,” Mat. Zametki, 59, No. 6, 855–864 (1996).

    MathSciNet  Google Scholar 

  185. D. A. Nomirovskii, “On homeomorphisms given by some partial differential operators,” Ukr. Mat. Zh., 56, No. 12, 1707–1716 (2004).

    MathSciNet  Google Scholar 

  186. A. P. Oskolkov, “Non-stationary flows of visco-elastic fluids,” Tr. Mat. Inst. Steklova, 159, 103–131 (1983).

    MATH  MathSciNet  Google Scholar 

  187. A. P. Oskolkov, “Initial-boundary-value problems for the equations of motion of Kelvin-Voigt fluids and Oldroyd fluids,” Tr. Mat. Inst. Steklova, 179, 126–164 (1988).

    MathSciNet  Google Scholar 

  188. A. P. Oskolkov, “Nonlocal problems for one class of nonlinear operator equations that arise in the theory of Sobolev-type equations,” Zap. Nauchn. Semin. POMI, 198, 31–48 (1991).

    MATH  Google Scholar 

  189. A. P. Oskolkov, “On stability theory for solutions of semilinear dissipative equations of the Sobolev type,” Zap. Nauchn. Semin. POMI, 200, 139–148 (1992).

    Google Scholar 

  190. L. V. Ovsyannikov, N. I. Makarenko, V. N. Nalimov et al., Nonlinear Problems of the Theory of Surface and Internal Waves [in Russian], Nauka, Novosibirsk (1985).

    MATH  Google Scholar 

  191. M. A. Park, “Pointwise decay estimates of solutions of the generalized Rosenau equation,” J. Korean Math. Soc., 29, No. 2, 261–280 (1992).

    MATH  MathSciNet  Google Scholar 

  192. M. A. Park, “On the Rosenau equation in multidimensional space,” J. Nonlin. Anal., 21, No. 1, 77–85 (1993).

    Article  MATH  Google Scholar 

  193. J. M. Pereira, “Stability of multidimensional traveling waves for a Benjamin-Bona-Mahony-type equation,” Differ. Integral Equations, 9, No. 4, 849–863 (1996).

    MATH  MathSciNet  Google Scholar 

  194. I. G. Petrovskii, Lectures in Ordinary Differential Equations [in Russian], Nauka, Moscow (1970).

    Google Scholar 

  195. V. I. Petviashvili and O. A. Pokhotelov, Solitary Waves in Plasma and Atmosphere [in Russian], Atomizdat, Moscow (1989).

    Google Scholar 

  196. D. Phillips, “Existence of solutions of quenching problems,” Applicable Anal., 24, 253–264 (1987).

    Article  MATH  Google Scholar 

  197. Yu. D. Pletner, “Structural properties of the solutions of the gravitational-gyroscopic wave equation and the explicit solution of a problem in the dynamics of a stratified rotating fluid,” Zh. Vychisl. Mat. Mat. Fiz., 30, No. 10, 1513–1525 (1990).

    MathSciNet  Google Scholar 

  198. Yu. D. Pletner, “Representation of solutions of the two-dimensional gravitational-gyroscopic wave equation by generalized Taylor and Laurent series,” Zh. Vychisl. Mat. Mat. Fiz., 30, No. 11, 1728–1740 (1990).

    MathSciNet  Google Scholar 

  199. Yu. D. Pletner, “On oscillations of a two-sided disk in a stratified fluid,” Zh. Vychisl. Mat. Mat. Fiz., 30, No. 2, 278–290 (1990).

    MathSciNet  Google Scholar 

  200. Yu. D. Pletner, “On properties of solutions of equations analogous to the two-dimensional Sobolev equation,” Zh. Vychisl. Mat. Mat. Fiz., 31, No. 10, 1512–1525 (1991).

    MATH  MathSciNet  Google Scholar 

  201. Yu. D. Pletner, “On some properties of solutions of the equation for gravitational-gyroscopic waves,” Dokl. Akad. Nauk SSSR, 317, No.3, 570–572 (1991).

    MathSciNet  Google Scholar 

  202. Yu. D. Pletner, “The construction of the solutions of some partial differential equations,” Zh. Vychisl. Mat. Mat. Fiz., 32, No. 5, 742–757 (1992).

    MathSciNet  Google Scholar 

  203. Yu. D. Pletner, “The properties of the solutions of some partial differential equations,” Zh. Vychisl. Mat. Mat. Fiz., 32, No. 6, 890–903 (1992).

    MathSciNet  Google Scholar 

  204. Yu. D. Pletner, “Fundamental solutions of Sobolev-type operators and some initial-boundary-value problems,” Zh. Vychisl. Mat. Mat. Fiz., 32, No. 12, 1885–1899 (1992).

    MathSciNet  Google Scholar 

  205. Yu. D. Pletner, “Representation of solutions of two-dimensional analogues of the Sobolev equation by generalized Taylor and Laurent series,” Zh. Vychisl. Mat. Mat. Fiz., 32, No. 1, 59–70 (1992).

    MATH  MathSciNet  Google Scholar 

  206. M. M. Postnikov, Lectures in Geometry. Semester 2. Linear Algebra [in Russian], Nauka, Moscow (1986).

    Google Scholar 

  207. S. I. Pokhozhaev, “Eigenfunctions of the equation Δu + λf(u) = 0,” Dokl. Akad. Nauk SSSR, 165, No. 1, 36–39 (1965).

    MathSciNet  Google Scholar 

  208. S. I. Pokhozhaev, “On eigenfunctions of quasilinear elliptic problems,” Mat. Sb., 82, 192–212 (1970).

    MathSciNet  Google Scholar 

  209. S. I. Pokhozhaev, “On a class of quasilinear hyperbolic equations,” Mat. Sb., 25, No. 1, 145–158 (1975).

    Article  Google Scholar 

  210. S. I. Pokhozhaev, “On an approach to nonlinear equations,” Dokl. Akad. Nauk SSSR, 247, No. 6, 1327–1331 (1979).

    MathSciNet  Google Scholar 

  211. S. I. Pokhozhaev, “On a constructive method of the calculus of variations,” Dokl. Akad. Nauk SSSR, 298, No. 6, 1330–1333 (1988).

    Google Scholar 

  212. S. I. Pokhozhaev, “On the method of fibering a solution of nonlinear boundary-value problems,” Tr. Mat. Inst. Steklova, 192, 146–163 (1990).

    MATH  MathSciNet  Google Scholar 

  213. S. G. Pyatkov, “Boundary-value problems for some equations of the theory of electric circuits,” Akt. Vopr. Sovr. Mat., 1, 121–133 (1995).

    MathSciNet  Google Scholar 

  214. Yu. N. Rabotnov, Creep of Construction Elements [in Russian], Nauka, Moscow (1967).

    Google Scholar 

  215. L. G. Redekopp, “On the theory of solitary Rossby waves,” J. Fluid Mech., 82, No. 4, 725–745 (1977).

    Article  MATH  MathSciNet  Google Scholar 

  216. A. P. Robertson and W. Robertson, Topological Vector Spaces, Cambridge Tracts Math., 53, Cambridge Univ. Press, Cambridge (1980).

    MATH  Google Scholar 

  217. J. D. Rossi, “The blow-up rate for a semilinear parabolic equation with a nonlinear boundary condition,” Acta. Math. Univ. Comen., 67, No. 2, 343–350 (1998).

    MATH  Google Scholar 

  218. A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, and A. P. Mikhailov, Pealing Regimes in Problems for Quasilinear Parabolic Equations [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  219. Ya. I. Sekerzh-Zen’kovich, “Finite-amplitude stationary waves generated by a periodic pressure distribution on the surface of a flowing heavy liquid of finite depth,” Dokl. Akad. Nauk SSSR, 180, No. 3, 560–563 (1968).

    Google Scholar 

  220. S. Ya. Sekerzh-Zen’kovich, “Theory of stationary waves of finite amplitude caused by pressure periodically distributed on the flow surface of an infinitely deep heavy fluid,” Dokl. Akad. Nauk SSSR, 180, No. 2, 304–307 (1968).

    Google Scholar 

  221. S. Ya. Sekerzh-Zen’kovich, “On the nonlinear theory of stationary gravitational-capillary waves induced by periodic pressure along the surface of a fluid over a sinuous bed,” in: Proc. VIth Symp. on the Theory of Diffraction and Propagation of Waves, Erevan (1973), pp. 163–168.

  222. S. Ya. Sekerzh-Zen’kovich, “A fundamental solution of the internal-wave operator,” Dokl. Akad. Nauk SSSR, 246, No. 2, 286–289 (1979).

    MathSciNet  Google Scholar 

  223. I. A. Shishmarev, “On a nonlinear Sobolev-type equation,” Differ. Uravn., 41, No. 1, 138–140 (2005).

    MathSciNet  Google Scholar 

  224. R. E. Showalter, “Partial differential equations of Sobolev-Galpern type,” Pac. J. Math., 31, No. 3, 787–793 (1963).

    MathSciNet  Google Scholar 

  225. R. E. Showalter, “Existence and representation theorems for a semilinear Sobolev equation in Banach spaces,” SIAM J. Math. Anal., 3, No. 3, 527–543 (1972).

    Article  MATH  MathSciNet  Google Scholar 

  226. R. E. Showalter, “Nonlinear degenerate evolution equations and partial differential equations of mixed type,” SIAM J. Math. Anal., 6, No. 1, 25–42 (1975).

    Article  MATH  MathSciNet  Google Scholar 

  227. R. E. Showalter, “The Sobolev type equations, I, II,” Appl. Anal., 5, No. 1, 15–22; No. 2, 81–99 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  228. R. E. Showalter, “Monotone operators in Banach space and nonlinear differential equations,” Math. Surv. Monogr., 49, Amer. Math. Soc. (1997).

  229. R. E. Showalter and T. W. Ting, “Pseudoparabolic partial differential equations,” SIAM J. Math. Anal., 1, No. 1, 1–26 (1970).

    Article  MATH  MathSciNet  Google Scholar 

  230. S. T. Simakov, On the theory of internal and surface waves [in Russian], Deposited at the All-Union Institute for Scientific and Technical Information, No. 8814-B87 (1987).

  231. S. T. Simakov, “On small oscillations of a stratified capillary liquid,” Prikl. Mat. Mekh., 53, No. 1, 66–73 (1989).

    MathSciNet  Google Scholar 

  232. A. P. Sitenko and P. P. Sosenko, “On the short-wave convective turbulence and abnormal electronic thermal conduction of plasma,” Fiz. Plasmy, 13, No. 4, 456–462 (1987).

    Google Scholar 

  233. I. V. Skrypnik, Methods for the Investigation of Nonlinear Elliptic Boundary-Value Problems [in Russian], Nauka, Moscow (1990).

    MATH  Google Scholar 

  234. W. R. Smythe, Static and Dynamic Electricity, McGraw Hill, New York-London (1950).

    Google Scholar 

  235. S. L. Sobolev, “On one new problem of mathematical physics,” Izv. Akad. Nauk SSSR, 18, 3–50 (1954).

    MathSciNet  Google Scholar 

  236. S. Spagnolo, “The Cauchy problem for Kirchho. equations,” Rend. Semin. Mat. Fis. Milano, 62, 17–51 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  237. U. Stefanelli, “On a class of doubly nonlinear nonlocal evolution equations,” Differ. Integral Equations, 15, No. 8, 897–922 (2002).

    MATH  MathSciNet  Google Scholar 

  238. J. A. Stratton, Electromagnetic Theory, McGraw-Hill, London (1941).

    MATH  Google Scholar 

  239. A. G. Sveshnikov and A. N. Tikhonov, Theory of Functions of a Complex Variable [in Russian], Nauka, Moscow (1986).

    Google Scholar 

  240. G. A. Sviridyuk, “A model of dynamics of an incompressible viscoelastic liquid,” Izv. Vyssh. Uchebn. Zaved., Ser. Mat., 1, 74–79 (1988).

    MathSciNet  Google Scholar 

  241. G. A. Sviridyuk, “On a model of dynamics of a weak-compressible, viscous-elastic liquid,” Izv. Vyssh. Uchebn. Zaved., Ser. Mat., 1, 62–70 (1994).

    MathSciNet  Google Scholar 

  242. G. A. Sviridyuk, “On the general theory of operator semigroups,” Usp. Mat. Nauk, 49, No. 4, 47–74 (1994).

    MathSciNet  Google Scholar 

  243. G. A. Sviridyuk, “The manifold of solutions of an operator singular pseudoparabolic equation,” Dokl. Akad. Nauk SSSR, 289, 1315–1318 (1986).

    MathSciNet  Google Scholar 

  244. G. A. Sviridyuk and V. E. Fedorov, “Analytic semigroups with kernel and linear equations of Sobolev type,” Sib. Mat. Zh., 36, No. 5, 1130–1145 (1995).

    MathSciNet  Google Scholar 

  245. G. A. Sviridyuk and V. E. Fedorov, Linear Sobolev-Type Equations and Degenerate Semigroups of Operators, Utrecht (2003).

  246. G. A. Sviridyuk and V. O. Kazak, “The phase space of an initial-boundary value problem for the Hoff equation,” Mat. Zametki, 71, No. 2, 292–297 (2002).

    MathSciNet  Google Scholar 

  247. G. A. Sviridyuk and I. N. Semenova, “Solvability of an inhomogeneous problem for a generalized Boussinesq filtration equation,” Differ. Uravn., 24, No. 9, 1607–1611 (1988).

    MathSciNet  Google Scholar 

  248. G. A. Sviridyuk and O. V. Vakarina, “Cauchy problem for a class of higher-order linear equations of Sobolev type,” Differ. Uravn., 33, No. 10, 1418–1410 (1997).

    MathSciNet  Google Scholar 

  249. I. E. Tamm, Foundations of the Theory of Electricity [in Russian], Nauka, Moscow (1989).

    Google Scholar 

  250. B. Tan and J. P. Boyd, “Dynamics of the Flierl-Petviashvili monopoles in a barotropic model with topographic forcing,” Wave Motion, 26, No. 3, 239–251 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  251. B. Tan and S. Liu, “Nonlinear Rossby waves in geophysical fluids,” J. Math. Appl., 3, No. 1, 40–49 (1990).

    MATH  MathSciNet  Google Scholar 

  252. T. W. Ting, “Certain nonsteady flows of second-order fluids,” Arch. Ration. Mech. Anal., 14, No. 1, 28–57 (1963).

    Article  MathSciNet  Google Scholar 

  253. T. W. Ting, “Parabolic and pseudoparabolic partial differential equations,” J. Math. Soc. Jpn., 14, 1–26 (1969).

    MathSciNet  Google Scholar 

  254. M. B. Tverskoi, “Nonlinear waves in a stratified liquid which are independent of the vertical coordinate,” Zh. Vychisl. Mat. Mat. Fiz., 36, No. 9, 112–119 (1996).

    MathSciNet  Google Scholar 

  255. S. V. Uspenskii, “On the representation of functions defined by a class of hypo-elliptic operators,” Tr. Mat. Inst. Steklova, 117, 292–299 (1972).

    MathSciNet  Google Scholar 

  256. S. V. Uspenskii, Embedding Theorems and Their Applications to Differential Equations [in Russian], Nauka, Novosibirsk (1984).

    Google Scholar 

  257. S. V. Uspenskii and E. N. Vasil’eva, “On the behavior at infinity of a solution of a problem in hydrodynamics,” Tr. Mat. Inst. Steklova, 192, 221–230 (1990).

    MathSciNet  Google Scholar 

  258. M. M. Vainberg, Variational Methods for Nonlinear Operators [in Russian], Moscow (1956).

  259. A. I. Vakser, “Thermo-current instability in semiconductors,” Fiz. Tekhn. Poluprovod., 15, No. 11, 2203–2208 (1981).

    Google Scholar 

  260. M. B. Vinogradova, O. V. Rudenko, and A. P. Sukhorukov, Theory of Waves [in Russian], Nauka, Moscow (1990).

    Google Scholar 

  261. M. I. Vishik, “The Cauchy problem for equations with operator coefficients; mixed boundary value problem for systems of differential equations and approximation methods for their solutions,” Mat. Sb., 39, No. 1, 51–148 (1956).

    MathSciNet  Google Scholar 

  262. V. S. Vladimirov, Equations of Mathematical Physics [in Russian], Nauka, Moscow (1988).

    MATH  Google Scholar 

  263. V. Volterra, Theory of Functionals and of Integral and Integro-Differential Equations, Dover Publ., New York (1959).

    MATH  Google Scholar 

  264. V. N. Vragov, Boundary-Value Problems for Nonclassical Equations of Mathematical Physics [in Russian], Novosibirsk (1983).

  265. W. Walter, “On existence and nonexistence in the large of solutions of parabolic differential equations with a nonlinear boundary condition,” SIAM J. Math. Anal., 6, No. 1, 85–90 (1975).

    Article  MATH  MathSciNet  Google Scholar 

  266. G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge Univ. Press, London (1966).

    MATH  Google Scholar 

  267. G. B. Whitham, Linear and Nonlinear Waves, Wiley, New York, (1999).

    MATH  Google Scholar 

  268. K. Yoshida, Functional Analysis [Russian translation], Mir, Moscow (1967).

    Google Scholar 

  269. V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevskii, Theory of Solitons. Inverse Scattering Method [in Russian], Nauka, Moscow (1980).

    Google Scholar 

  270. V. E. Zakharov, A. S. Monin, and L. I. Piterbarg, “Hamiltonian description of baroclinic Rossby waves,” Dokl. Akad. Nauk SSSR, 295, 1061–1064 (1987).

    MathSciNet  Google Scholar 

  271. V. E. Zakharov and L. I. Piterbarg, “Canonical variables for Rossby and drift waves in plasma,” Dokl. Akad. Nauk SSSR, 295, 86–90 (1987).

    MathSciNet  Google Scholar 

  272. T. I. Zelenyak, Selected Problems of the Qualitative Theory of Partial Differential Equations [in Russian], Novosibirsk (1970).

  273. T. I. Zelenyak, B. V. Kapitonov, V. V. Skazka, and M. V. Fokin, On S. L. Sobolev’s problem in the theory of small oscillations of a rotating liquid [in Russian], Preprint No. 471, Novosibirsk (1983).

  274. L. Zhang, “Decay of solutions of generalized BBMB equations in n-space dimensions,” Nonlin. Anal., 20, 1343–1390 (1995).

    Article  Google Scholar 

  275. V. A. Zorich, Mathematical Analysis [in Russian], Nauka, Moscow (1981).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Sovremennaya Matematika i Ee Prilozheniya (Contemporary Mathematics and Its Applications), Vol. 40, Differential Equations, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korpusov, M.O., Sveshnikov, A.G. Blow-up of solutions of strongly nonlinear equations of pseudoparabolic type. J Math Sci 148, 1–142 (2008). https://doi.org/10.1007/s10958-007-0541-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-007-0541-3

Keywords

Navigation