Skip to main content
Log in

Combinatorial fiber bundles and fragmentation of a fiberwise PL homeomorphism

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

With a compact PL manifold X we associate a category \(\mathfrak{T}(X)\). The objects of \(\mathfrak{T}(X)\) are all combinatorial manifolds of type X, and morphisms are combinatorial assemblies. We prove that the homotopy equivalence

$$B\mathfrak{T}(X) \approx BPL(X)$$

holds, where PL(X) is the simplicial group of PL homeomorphisms. Thus the space \(B\mathfrak{T}(X)\) is a canonical countable (as a CW-complex) model of BPL (X). As a result, we obtain functorial pure combinatorial models for PL fiber bundles with fiber X and a PL polyhedron B as the base. Such a model looks like a \(\mathfrak{T}(X)\)-coloring of some triangulation K of B. The vertices of K are colored by objects of \(\mathfrak{T}(X)\), and the arcs are colored by morphisms in such a way that the diagram arising from the 2-skeleton of K is commutative. Comparing with the classical results of geometric topology, we obtain combinatorial models of the real Grassmannian in small dimensions: \(B\mathfrak{T}(S^{n - 1} ) \approx BO(n)\) for n = 1, 2, 3, 4. The result is proved in a sequence of results on similar models of BPL (X). Special attention is paid to the main noncompact case X = ℝn and to the tangent bundle and Gauss functor of a combinatorial manifold. The trick that makes the proof possible is a collection of lemmas on “fragmentation of a fiberwise homeomorphism,” a generalization of the folklore lemma on fragmentation of an isotopy. Bibliography: 34 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Abramovich, K. Karu, K. Matsuki, and J. Wlodarczyk, “Torification and factorization of birational maps,” J. Amer. Math. Soc., 15,No. 3, 531–572 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  2. J. W. Alexander, “The combinatorial theory of complexes,” Ann. Math. (2), 31,No. 2, 292–320 (1930).

    Article  Google Scholar 

  3. P. S. Alexandroff, “Discrete Räume,” Mat. Sb. (N.S.), 2, 501–518 (1937).

    MATH  Google Scholar 

  4. L. Anderson and N. Mnev, “Triangulations of manifolds and combinatorial bundle theory: an announcement,” Zap. Nauchn. Semin. POMI, 267, 46–52 (2000).

    Google Scholar 

  5. F. G. Arenas, “Alexandroff spaces,” Acta Math. Univ. Comenian. (N.S.), 68,No. 1, 17–25 (1999).

    MATH  MathSciNet  Google Scholar 

  6. D. K. Biss, “The homotopy type of the matroid Grassmannian,” Ann. Math. (2), 158,No. 3, 929–952 (2003).

    MATH  MathSciNet  Google Scholar 

  7. A. Björner, “Posets, regular CW complexes, and Bruhat order,” European J. Combin., 5,No. 1, 7–16 (1984).

    MATH  MathSciNet  Google Scholar 

  8. E. H. Brown, Jr, “Cohomology theories,” Ann. of Math. (2), 75, 467–484 (1962).

    Article  MathSciNet  Google Scholar 

  9. A. J. Casson, “Generalisations and applications of block bundles,” in: The Hauptvermutung Book, Kluwer Acad. Publ., Dordrecht (1996), pp. 33–67.

    Google Scholar 

  10. M. M. Cohen, “Simplicial structures and transverse cellularity,” Ann. Math. (2), 85, 218–245 (1967).

    Article  Google Scholar 

  11. P. G. Goerss and J. F. Jardine, Simplicial Homotopy Theory, Birkhäuser Verlag, Basel (1999).

    MATH  Google Scholar 

  12. A. E. Hatcher, “Higher simple homotopy theory,” Ann. Math. (2), 102,No. 1, 101–137 (1975).

    Article  MathSciNet  Google Scholar 

  13. A. E. Hatcher, “A proof of a Smale conjecture, Diff(S 3) ≃ O(4),” Ann. Math. (2), 117,No. 3, 553–607 (1983).

    Article  MathSciNet  Google Scholar 

  14. A. Heller, “Homotopy resolutions of semi-simplicial complexes,” Trans. Amer. Math. Soc., 80, 299–344 (1955).

    Article  MATH  MathSciNet  Google Scholar 

  15. J. F. P. Hudson, Piecewise Linear Topology, W. A. Benjamin, New York-Amsterdam (1969).

    MATH  Google Scholar 

  16. J. L. Kelley, General Topology, Van Nostrand Company, Toronto-New York-London (1955).

    MATH  Google Scholar 

  17. N. H. Kuiper and R. K. Lashof, “Microbundles and bundles. I. Elementary theory,” Invent. Math., 1, 1–17 (1966).

    Article  MATH  MathSciNet  Google Scholar 

  18. N. H. Kuiper and R. K. Lashof, “Microbundles and bundles. II. Semisimplicial theory,” Invent. Math., 1, 243–259 (1966).

    Article  MATH  MathSciNet  Google Scholar 

  19. N. Levitt, Grassmannians and Gauss Maps in Piecewise-Linear Topology. Lect. Notes Math., Vol. 1366, Springer-Verlag, Berlin (1989).

    MATH  Google Scholar 

  20. J.-L. Loday, Cyclic Homology, 2nd edition, Springer-Verlag, Berlin (1998).

    MATH  Google Scholar 

  21. A. Lundell and S. Weingram, The Topology of CW-Complexes, Van Nostrand Reinhold, New York (1969).

    MATH  Google Scholar 

  22. J. P. May, Classifying Spaces and Fibrations, Mem. Amer. Math. Soc., 1,No. 155 (1975).

  23. M. C. McCord, “Singular homology groups and homotopy groups of finite topological spaces,” Duke Math. J., 33, 465–474 (1966).

    Article  MATH  MathSciNet  Google Scholar 

  24. D. McDuff, “On the classifying spaces of discrete monoids,” Topology, 18,No. 4, 313–320 (1979).

    Article  MATH  MathSciNet  Google Scholar 

  25. J. Milnor, Microbundles and Differential Structures (Mimeographed notes), Princeton University, September 1961.

  26. N. E. Mnëv and G. M. Ziegler, “Combinatorial models for the finite-dimensional Grassmannians,” Discrete Comput. Geom., 10,No. 3, 241–250 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  27. R. Morelli, “The birational geometry of toric varieties,” J. Algebraic Geom., 5,No. 4, 751–782 (1996).

    MATH  MathSciNet  Google Scholar 

  28. D. Quillen, “Homotopy properties of the poset of nontrivial p-subgroups of a group,” Adv. Math., 28,No. 2, 101–128 (1978).

    Article  MATH  MathSciNet  Google Scholar 

  29. C. M. Rourke and B. J. Sanderson, “Δ-sets I: Homotopy theory,” Quart. J. Math., 22, 321–338 (1971).

    Article  MATH  MathSciNet  Google Scholar 

  30. C. P. Rourke and B. J. Sanderson, Introduction to Piecewise-Linear Topology, Springer-Verlag, New York (1972).

    MATH  Google Scholar 

  31. M. Steinberger, “The classification of PL fibrations,” Michigan Math. J., 33,No. 1, 11–26 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  32. J. H. C. Whitehead, “Simplicial spaces, nuclei and m-groups,” Proc. London Math. Soc., 45, 243–327 (1939).

    Article  MATH  MathSciNet  Google Scholar 

  33. E. C. Zeeman, Seminar on Combinatorial Topology (Mimeographed notes), I.H.E.S., Paris (1963).

    Google Scholar 

  34. E. C. Zeeman, “Relative simplicial approximation,” Proc. Cambridge Philos. Soc., 60, 39–43 (1964).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. E. Mnëv.

Additional information

__________

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 344, 2007, pp. 56–173.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mnëv, N.E. Combinatorial fiber bundles and fragmentation of a fiberwise PL homeomorphism. J Math Sci 147, 7155–7217 (2007). https://doi.org/10.1007/s10958-007-0537-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-007-0537-z

Keywords

Navigation