Skip to main content

A mathematical model of information transfer in ribbon synapses


In this paper, we make an attempt to construct a mathematical description of the physiological processes in presynaptic endings in semicircular canal hair cells of the vestibular system. The receptor potential of the hair cell is the model input. The intensity of the neurotransmitter entering into the synaptic cleft is the model output. The newest investigations established that signal processing which introduces slow adaptation in the afferent responses, must be interposed between the hair cell voltage and the afferent discharge. Afferent spike generation in the semicircular canals, however, results in relatively tonic spike trains in response to steps of current injection and is not likely to introduce the type of adaptation reported here. This leads to the hypothesis that the primary site for adaptation in the vestibular afferents is the synaptic transference between hair cell and afferent. As a case in point, we studied the adaptation of the neurotransmitter in response to the receptor potencial steps. Adequateness of the modeling results and the experimental data may be achieved by combined use of the dynamic and morphological experimental results.

This is a preview of subscription content, access via your institution.


  1. 1.

    B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and D. Watson, Molecular Biology of the Cell, New York (1989).

  2. 2.

    V. V. Alexandrov, T. B. Alexandrova, T. G. Astakhova, A. G. Yakushev, and E. Soto, “Dynamics equations of the semicircular canal cupulo-endolymphatic system,” Differ. Uravn., 35, No. 4, 1–6 (1999).

    Google Scholar 

  3. 3.

    V. V. Alexandrov, A. Almanza, N. V. Kulikovskaya, R. Vega, T. B. Alexandrova, N. E. Shulenina, A. Limon, and E. Soto, “A mathematical model of the total current dynamics in hair cells,” in: Mathematical Modeling of Complex Information-Processing Systems, Moscow University Press (2001), pp. 26–41.

  4. 4.

    V. V. Alexandrov, T. G. Astakhova, and V. K. Trincher, “A mathematical model of the vestibular canal function,” Vestn. Mosk. Univ. Ser. 1 Mat. Mekh., No. 5, 72–76 (1999).

  5. 5.

    D. Beutner, T. Voets, E. Neher, and T. Moser, “Calcium dependence of exocytosis and endocytosis at the cochlear inner hair cell afferent synapse,” Neuron, 29, 681–690 (2001).

    Article  Google Scholar 

  6. 6.

    S. Borges, E. Gleason, M. Turelli, and M. Wilson, “The kinetics of quantal transmitter release from retinal amacrine cells,” Proc. Natl. Acad. Sci. USA, 92, 6896–6900 (1995).

    Article  Google Scholar 

  7. 7.

    R. Boyle, J. P. Carey, and S. M. Highstein, “Morphological correlates of response dynamics and efferent stimulation in horizontal semicircular canal afferents of the toadfish, Opsanus tau,” J. Neurophysiol., 66, 1504–1521 (1991).

    Google Scholar 

  8. 8.

    R. Boyle and S. M. Highstein, “Resting discharge and response dynamics of horizontal semicircular canal afferents of the toadfish, Opsanus tau,” J. Neurosci., 10, 1557–1569 (1990).

    Google Scholar 

  9. 9.

    H. von Gersdorff, “Synaptic ribbons: Versatile signal transducers,” Neuron, 29, 7–10 (2001).

    Article  Google Scholar 

  10. 10.

    H. von Gersdorff and G. Matthews, “Dynamics of synaptic vesicle fusion and membrane retrieval in synaptic terminals,” Nature, 367, 735–739 (1994).

    Article  Google Scholar 

  11. 11.

    H. von Gersdorff and G. Matthews, “Depletion and replenishment of vesicle pools at a ribbon-type synaptic terminal,” J. Neurosci., 17, 1919–1927 (1997).

    Google Scholar 

  12. 12.

    H. von Gersdorff, T. Sakaba, K. Berglund, and M. Tachibana, “Submillisecond kinetics of glutamate release from a sensory synapse,” Neuron, 21, 1177–1188 (1998).

    Article  Google Scholar 

  13. 13.

    H. von Gersdorff, E. Vardi, G. Matthews, and P. Sterling, “Evidence that vesicles on the synaptic ribbon or retinal bipolar neurons can be rapidly released,” Neuron, 16, 1221–1227 (1996).

    Article  Google Scholar 

  14. 14.

    J. M. Goldberg and C. Fernandez, “Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. I. Resting discharge and response to constant angular accelerations,” J. Neurophysiol., 34, 635–660 (1971).

    Google Scholar 

  15. 15.

    J. M. Goldberg and C. Fernandez, “Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. III. Variations among units in their discharge properties,” J. Neurophysiol., 34, 676–684 (1971).

    Google Scholar 

  16. 16.

    P. S. Guth, P. Perin, C. H. Norris, and P. Valli, “The vestibular hair cells: Post-transductional signal processing,” Progr. Neurobiol., 54, 193–247 (1998).

    Article  Google Scholar 

  17. 17.

    S. M. Highstein, R. D. Rabbitt, G. R. Holstein, and R. D. Boyle, “Determinants of spatial and temporal coding by semicircular canal afferents,” J. Neurophysiol., 93, 2359–2370 (2005).

    Article  Google Scholar 

  18. 18.

    D. Lenzi, J. Crum, M. H. Ellisman, and W. M. Roberts, “Depolarization redistributes synaptic membrane and creates a gradient of vesicles on the synaptic body at ribbon synapse,” Neuron, 36, 649–659 (2002).

    Article  Google Scholar 

  19. 19.

    D. Lenzi and H. von Gersdorff, “Structure suggests function: The case for synaptic ribbons as exocytotic nanomachines,” Bioessays, 23, 831–840 (2001).

    Article  Google Scholar 

  20. 20.

    D. Lenzi, J. W. Runyeon, J. Crum, M. H. Ellisman, W. M. Roberts, “Synaptic vesicle populations in saccular hair cells reconstructed by electron tomography,” J. Neurosci., 19, 119–132 (1999).

    Google Scholar 

  21. 21.

    C. Martinez-Dunst, R. L. Michaels, and P. A. Fuchs, “Release sites and calcium channels in hair cells of the chick cochlea,” J. Neurosci., 17, 9133–9144 (1997).

    Google Scholar 

  22. 22.

    G. Matthews, “Synaptic mechanisms of bipolar cell terminals,” Vision Res., 39, 2469–2476 (1999).

    Article  Google Scholar 

  23. 23.

    T. D. Parsons, D. Lenzi, W. Almers, and W. M. Roberts, “Calcium triggered exocytosis and endocytosis in an isolated presynaptic cell: Capacitance measurement in saccular hair cells,” Neuron, 13, 875–883 (1994).

    Article  Google Scholar 

  24. 24.

    R. D. Rabbitt, R. D. Boyle, G. R. Holstein, and S. M. Highstein, “Hair-cell versus afferent adaptation in the semicircular canals,” J. Neurophysiol., 93, 424–436 (2005).

    Article  Google Scholar 

  25. 25.

    W. M. Roberts, R. A. Jacobs, and A. J. Hudspeth, “Colocalization of ion channels involved in frequency selectivity and synaptic transmission at presynaptic active zones of hair cells,” J. Neurosci., 10, 3664–3684 (1990).

    Google Scholar 

  26. 26.

    V. A. Sadovnichy, V. V. Alexandrov, T. B. Alexandrova, A. Almanza, T. G. Astakhova, R. Vega, N. V. Kulikovskaya, E. Soto, and N. E. Shulenina, “A mathematical model of the mechanoreceptor of angular acceleration,” Vestn. Mosk. Univ. Ser. 1 Mat. Mekh., No. 6, 46–54 (2002).

  27. 27.

    R. M. Schmich and M. I. Miller, “Stochastic threshold characterization of the intensity of active channel dynamical action potential generation,” J. Neurophysiol., 78, 2616–2630 (1997).

    Google Scholar 

  28. 28.

    C. E. Smith and J. M. Goldberg, “A stochastic afterhyperpolarization model of repetitive activity in vestibular afferents,” Biol. Cybern., 54, 41–51 (1986).

    Article  Google Scholar 

  29. 29.

    E. Soto, V. V. Alexandrov, T. B. Alexandrova, R. Cruz, R. Vega, and T. G. Astakhova, “A mechanical coupling model for the axolotle (Ambystoma tigrinum) semicircular canal,” in: Mathematical Modeling of Complex Information-Processing Systems, Moscow University Press, Moscow (2001), pp. 15–25.

    Google Scholar 

  30. 30.

    M. Tachibana, “Regulation of transmitter release from retinal bipolar cells,” Progr. Biophys. Molec. Biol., 109–133 (1999).

  31. 31.

    B. J. Zenisek, A. Steye, and W. Almers, “Transport, capture and exocytosis of single synaptic vesicles at active zones,” Nature, 406, 849–854 (2000).

    Article  Google Scholar 

  32. 32.

    G. Zussa, L. Botta, and P. Vall, “Evidence for L-glutamate release in frog vestibular organs,” Hearing Research, 52–56 (1992).

Download references

Author information



Additional information


Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 11, No. 8, pp. 205–221, 2005.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kulikovskaya, N.V., Kurilov, V.I. & Davydkin, S.A. A mathematical model of information transfer in ribbon synapses. J Math Sci 147, 6690–6701 (2007).

Download citation


  • Hair Cell
  • Semicircular Canal
  • Synaptic Cleft
  • Fusion Pore
  • Ribbon Synapse