Skip to main content

Motion control of mobile wheeled robots

Abstract

A vector-matrix formalism of nonholonomic mechanics is set up, which is used to construct mathematical models of mobile wheeled robots. The properties of free (ballistic) motions of mobile robots, which can be the basis of natural motion control modes, are studied. The analysis of uncontrollable motions is carried out, taking transients in circuits of the electric drive into consideration. The problem of determining voltages supplied to drives of the robot that ensure implementation of program motions is discussed. One candidate solution of a problem of planning a pathway of the robot in an ordered medium is presented. A mobile single-wheeled robot with a gyroscopic stabilization system is described—the “Gyrowheel” robot, capable of moving autonomously along a straight-line (rectilinear motion), as well as along a curvilinear pathway.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    A. V. Beznos, E. V. Gurkinfel, D. N. Zhikharev, A. V. Lenski, K. V. Savitskii, A. M. Formalskii, and L. S. Chesalin, “Control of the autonomous motion of a twin-wheel bicycle with a gyroscopic stabilizer,” in: Proc. Sci. School-Conf. “Mobile Robots and Mechatronic Systems,” 7–8 Dec. 1999, Izd. Mosk. Univ., Moscow (1999), pp. 57–67.

    Google Scholar 

  2. 2.

    A. V. Borisov, I. S. Mamaev, and A. A. Kilin, “Dynamics of a rolling disk,” in: A. V. Borisov and I. S. Mamaev, Nonholonomic Mechanical Systems. Integrability, Chaos, Strange Attractors, Institute of Computer Research, Izhevsk (2002).

    Google Scholar 

  3. 3.

    V. M. Budanov and E. A. Devyanin, “Features of the motion of wheel robots—nonholonomic mechanical systems,” in: Proc. Sci. School-Conf. “Mobile Robots and Mechatronic Systems,” 7–8 Dec. 1999, Izd. Mosk. Univ., Moscow (1999), pp. 147–164.

    Google Scholar 

  4. 4.

    V. M. Budanov and E. A. Devyanin, “On motion of wheeled robots,” Prikl. Mat. Mekh., 67, No. 2, 244–255 (2003).

    MATH  MathSciNet  Google Scholar 

  5. 5.

    B. V. Bulgakov, The Applied Theory of Gyros [in Russian], GITTL, Moscow (1955).

    Google Scholar 

  6. 6.

    A. A. Golovan, A. A. Grishin, D. N. Zhikharev, and A. V. Lenski, “Algorithms of the solution of mobile robot navigation problems,” in: Proc. Sci. School-Conf. “Mobile Robots and Mechatronic Systems,” 7–8 Dec. 1999, Izd. Mosk. Univ., Moscow (1999), pp. 109–128.

    Google Scholar 

  7. 7.

    D. M. Gusev and A. I. Kobrin, “Simulation of robotic system dynamics in real time,” in: Proc. Int. Conf. “Information Facilities and Technologies,” Izd. “Stankin,” Moscow (1997), pp. 66–71.

    Google Scholar 

  8. 8.

    D. M. Gusev, A. I. Kobrin, and Yu. G. Martynenko, “Navigation of a mobile robot on a polygon equipped with a system of beacons,” in: Proc. Sci. School-Conf. “Mobile Robots and Mechatronic Systems,” 5–6 Dec. 2000, Izd. Mosk. Univ., Moscow (2000), pp. 140–151.

    Google Scholar 

  9. 9.

    D. M. Gusev and Yu. G. Martynenko, “On usage of the fiber optic gyro in a mobile robot navigation problem,” in: Mobile Robots and Mechatronic Systems,” Izd. Mosk. Univ., Moscow (2002).

    Google Scholar 

  10. 10.

    E. A. Devyanin, “On motion of wheeled robots,” in: Proc. Sci. School-Conf. “Mobile Robots and Mechatronic Systems,” 7–8 Dec. 1999, Izd. Mosk. Univ., Moscow (1999), pp. 169–200.

    Google Scholar 

  11. 11.

    G. Hamel, “Die Lagrange-Eulerschen Gleichungen der Mechanik,” Z. Math. Phys., 50, 1–57 (1904).

    Google Scholar 

  12. 12.

    S. Hirose, “Introduction of “Intelligent Sport”,” J. Robotics Mechatronics, 10, No. 1, 226 (1998).

    MathSciNet  Google Scholar 

  13. 13.

    A. Yu. Ishlinskii, Orientation, Gyros, and Inertial Navigation [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  14. 14.

    V. I. Kalenova, V. M. Morozov, and M. A. Salmina, “Stability and stabilization of steadied motions of one class of nonholonomic mechanical systems,” in: Mobile Robots and Mechatronic Systems, Izd. Mosk. Univ., Moscow (2004), pp. 119–134.

    Google Scholar 

  15. 15.

    V. I. Kalenova, V. M. Morozov, and E. N. Sheveleva, “Stability and stabilization of the motion of a single-wheel bicycle,” Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 4, 49–58 (2001).

  16. 16.

    D. M. Klimov and V. M. Rudenko, Methods of Computer Algebra in Problems of Mechanics [in Russian], Nauka, Moscow (1989).

    MATH  Google Scholar 

  17. 17.

    D. M. Klimov and N. P. Stepanenko, “On integrating of equations of motion of the gyro in a gymbal,” Inzh. Zh. Mekh. Tverd. Tela, No. 6, 143–150 (1967).

  18. 18.

    A. I. Kobrin and Yu. G. Martynenko, “Nonholonomic dynamics of mobile robots and its simulation in a real time,” in: Proc. Sci. School-Conf. “Mobile Robots and Mechatronic Systems,” 7–8 Dec. 1999, Izd. Mosk. Univ., Moscow (1999), pp. 107–123.

    Google Scholar 

  19. 19.

    V. B. Kolmanovsky and N. H. McClamroch, “Developments in nonholonomic control problems,” IEEE Control Systems, 15, No. 6, 20–36 (1995).

    Article  Google Scholar 

  20. 20.

    A. Yu. L’vovich, Electromechanical Systems [in Russian], Izd. Leningr. Univ., Leningrad (1989).

    Google Scholar 

  21. 21.

    Yu. G. Martynenko, Analytical Dynamics of Electromechanical Systems, Izd. Mosk. Ehnerg. Inst., Moscow (1985).

    Google Scholar 

  22. 22.

    Yu. G. Martynenko, “Control algorithms of the mobile robot motion on beacons,” in: Proc. Int. Conf. “Information Facilities and Technologies,” Vol. 2, Izd. “Stankin,” Moscow (1998), pp. 75–80.

    Google Scholar 

  23. 23.

    Yu. G. Martynenko, “Dynamics of mobile robots,” Soros Educ. J., 6, No. 5, 111–116 (2000).

    MathSciNet  Google Scholar 

  24. 24.

    Yu. G. Martynenko, “On a matrix form of equations of nonholonomic mechanics,” in: Trans. of Scientific-Metodological Papers in Theoretical Mechanics, No. 23, Izd. Mosk. Univ., Moscow (2000), pp. 9–21.

    Google Scholar 

  25. 25.

    Yu. G. Martynenko, “Application of the theory of nonholonomic electromechanical systems to problems of mobile wheeled robot dynamics,” in: Trans. Scientific Papers for 125-Years of the Theoretical Mechanics Department, Bauman University, MGTU (2003), pp. 33–47.

    Google Scholar 

  26. 26.

    Yu. G. Martynenko, “Problems of control and dynamics of mobile robots,” News Artificial Intelligence, No. 4 (52), 18–23 (2002).

  27. 27.

    Yu. G. Martynenko, “Stability of uncontrolled motions of the single-wheeled mobile robot with a flywheel system of stabilization,” in: Proc. Int. Conf. “Problems of Mechanics and Modern Machines”, Vol. 1, Ulan-Ude (2000), pp. 96–101.

    Google Scholar 

  28. 28.

    Yu. G. Martynenko, A. I. Kobrin, D. M. Gusev, A. O. Efremov, I. V. Orlov, and A. V. Shutyev, “Control of autonomous motion of the mobile robot of MEI,” in: Proc. Sci. School-Conf. “Mobile Robots and Mechatronic Systems,” 7–8 Dec. 1999, Izd. Mosk. Univ., Moscow (1999), pp. 58–80.

    Google Scholar 

  29. 29.

    Yu. G. Martynenko, A. I. Kobrin, and A. V. Lenski, “Nonholonomic dynamics, control, and stability of mobile robots,” in: The Eighth All-Russia Congress on Theoretical and Applied Mechanics. Summaries of Reports, Ural Dep. of RAS, Ekaterinburg (2001), pp. 330–331.

    Google Scholar 

  30. 30.

    Yu. G. Martynenko, A. I. Kobrin, and A. V. Lenski, “Decomposition of the problem of controlling of the mobile one-wheel robot with an unperturbed gyrostabilized platform,” Dokl. Physics, 47, No. 10, 772–774 (2002).

    Article  Google Scholar 

  31. 31.

    Yu. G. Martynenko, A. I. Kobrin, and A. V. Lensky, “Stability and control of the autonomous motion of a gyrowheel. Mathematical simulation and experimental results,” in: Proc. 12th Int. Symp. on Measurement and Control in Robotics. Bourges, France, ENSI (2002).

  32. 32.

    Yu. G. Martynenko, A. I. Kobrin, and A. V. Lensky, “Stabilization of a single-wheeled mobile robot with an unperturbed platform,” in: Proc. Int. Colloquium on Autonomous and Mobile Systems. Magdeburg, Germany, Fraunhofer IRB Verlag (2002), pp. 78–82.

  33. 33.

    Yu. G. Martynenko, A. V. Lenski, and A. I. Kobrin, “Optimization of the start-up process of the robot ‘Gyrowheel’,” in: Mobile Robots and Mechatronic Systems, Izd. Mosk. Univ., Moscow (2002), pp. 164–178.

    Google Scholar 

  34. 34.

    Yu. G. Martynenko and I. V. Orlov, “Influencing of transients in the electric drive on motion stability of the mobile wheeled robot,” in: Mobile Robots and Mechatronic Systems, Izd. Mosk. Univ., Moscow (2002), pp. 135–149.

    Google Scholar 

  35. 35.

    Yu. G. Martynenko and H. P. Siregar, “Optimization of power consumption of anthropomorphic robots driven by an electromotor,” in: Proc. the Third International Workshop on Robot Motion and Control RoMoCo’02. Poznan University of Technology, November 9–11, 2002, Bukowy Dworek, Poland, pp. 113–118.

    Chapter  Google Scholar 

  36. 36.

    Yu. G. Martynenko and M. F. Zatsepin, “Application of matrix methods for compiling Maggi and Euler-Lagrange equations of nonholonomic systems,” in: Trans. Sci.-Methodol. Papers in Theoretical Mechanics, No. 25, Izd. Mosk. Univ., Moscow (2004), pp. 86–101.

    Google Scholar 

  37. 37.

    Yu. I. Neimark and N. A. Fufaev, Dynamics of Nonholonomic Systems [in Russian], Nauka, Moscow (1967).

    Google Scholar 

  38. 38.

    D. E. Okhotsimskii and Yu. G. Martynenko, “New problems of dynamics and motion control of mobile wheeled robots,” Usp. Mekh., 2, No. 1, 3–47 (2003).

    Google Scholar 

  39. 39.

    D. E. Okhotsimskii, A. K. Platonov, V. E. Pavlovskii, S. N. Emel’yanov, and V. V. Pavlovskii, “Hardware and software of the mobile robot of the “monotype” class,” in: Proc. Sci. School-Conf. “Mobile Robots and Mechatronic Systems,” 7–8 Dec. 1999, Izd. Mosk. Univ., Moscow (1999), pp. 134–146.

    Google Scholar 

  40. 40.

    Z. Sheng, K. Yamafuji, and S. V. Ulyanov, “Study of the stability and motion control of a unicycle,” J. Robotics Mechatronics, 8, No. 6, 571–579 (1996).

    Google Scholar 

  41. 41.

    B. A. Smol’nikov, Problems of Mechanics and Optimization of Robots [in Russian], Nauka, Moscow (1991).

    MATH  Google Scholar 

  42. 42.

    V. G. Veretennikov, Theoretical Mechanics. A Compiling and Analysis of Equations of Motion on a Computer [in Russian], Vysshaya Shkola, Moscow (1990).

    Google Scholar 

  43. 43.

    J. Wittenburg, Dynamic Systems of Rigid Bodies, Teubner, Stuttgart (1977).

    Google Scholar 

  44. 44.

    S. Wolfram, Mathematica, Addison-Wesley (1996).

  45. 45.

    S. L. Zenkevich, A. V. Nazarova, and D. M. Lisitsyn, “Simulation of a mobile robot motion on a complex pathway,” in: Proc. Sci. School-Conf. “Mobile Robots 2000,” Izd. Mosk. Univ., Moscow (2000), pp. 14–27.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Additional information

__________

Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 11, No. 8, pp. 29–80, 2005.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Martynenko, Y.G. Motion control of mobile wheeled robots. J Math Sci 147, 6569–6606 (2007). https://doi.org/10.1007/s10958-007-0496-4

Download citation

Keywords

  • Mobile Robot
  • Nonholonomic System
  • Electromechanical System
  • Nonholonomic Constraint
  • Mechatronic System