Skip to main content
Log in

Diffeomorphism groups of compact manifolds

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. K. Abe and K. Fukui, “On commutators of equivariant diffeomorphisms,” Proc. Jpn. Acad., 54, 52–54 (1978).

    MATH  MathSciNet  Google Scholar 

  2. K. Abe and K. Fukui, “On the structure of automorphisms of manifolds,” in: Proc. Int. Conf. on Geometry, Integrability, and Quantization, Varna, Bulgaria, September 1–10, 1999 (I. M. Mladenov et al., eds.), Coral Press Scientific Publ., Sofia (2000), pp. 7–16.

    Google Scholar 

  3. K. Abe, “On the homotopy type of groups of equivariant diffeomorphisms,” Publ. RIMS Kyoto Univ., 16, 601–626 (1980).

    MATH  Google Scholar 

  4. R. Abraham, Lectures of Smale on Differential Topology, Mimeographed notes, Columbia Univ., New York (1962).

    Google Scholar 

  5. R. Abraham and J. Marsden, Foundations of Mechanics, Benjamin, New York (1967).

    MATH  Google Scholar 

  6. M. Adams, T. Ratiu, and R. Schmid, “A Lie group structure for pseudodifferential operators,” Math. Ann., 273, No. 4, 529–551 (1986).

    MATH  MathSciNet  Google Scholar 

  7. M. Adams, T. Ratiu, and R. Schmid, “A Lie group structure for Fourier integral operators,” Math. Ann., 276, No. 1, 19–41 (1986).

    MATH  MathSciNet  Google Scholar 

  8. G. D’Ambra and M. Gromov, “Lecture on transformation groups: Geometry and dynamics,” Surv. Differ. Geom., 1, 19–111 (1991).

    MathSciNet  Google Scholar 

  9. P. Antonelli, D. Burghelea, and P. Kahn, “The non-infinite homotopy type of some diffeomorphism groups,” Topology, 11, 1–49 (1972).

    MATH  MathSciNet  Google Scholar 

  10. T. A. Arakelyan and G. K. Savvidy, “Geometry of a group of area-preserving diffeomorphisms,” Phys. Lett. B, 223, No. 1, 41–46 (1989).

    MathSciNet  Google Scholar 

  11. V. I. Arnold, “Variational principle for three-dimensional stationary flows of the ideal fluid,” Prikl. Mat. Mekh., 29, No. 5, 846–851 (1965).

    Google Scholar 

  12. V. I. Arnold, “Sur la topologie des écoulements stationnaires des fluides parfaits,” C. R. Acad. Sci. Paris, 261, 117–120 (1965).

    Google Scholar 

  13. V. I. Arnold, “Sur la geometrie differentielle des groupes de Lie de dimension infinite et ses applications a l’hidrodynamique des fluides parfaits,” Ann. Inst. Fourier, 16, No. 1, 319–361 (1966).

    MathSciNet  Google Scholar 

  14. V. I. Arnold, “Hamiltonian property of the Euler equations of the rigid body and ideal fluid dynamics,” Usp. Mat. Nauk., 24, No. 3, 225–226 (1969).

    Google Scholar 

  15. V. I. Arnold, Mathematical Methods of Classical Mechanics [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  16. V. I. Arnold and A. B. Givental, “Symplectic geometry,” in: Progress in Science and Technology, Series on Contemporary Problems in Mathematics, Fundamental Directions, Dynamical System-4 [in Russian], All-Union Institute for Scientific and Technical Information, USSR Academy of Sciences, Moscow (1985), pp. 7–139.

    Google Scholar 

  17. V. I. Arnold, “The asymptotic Hopf invariant and its applications,” Select. Math. Sov., 5, 327–345 (1986).

    MATH  Google Scholar 

  18. V. I. Arnold, “The asymptotic Hopf invariant and its applications,” Select. Math. Sov., 5, No. 4, 327–345 (1986).

    MATH  Google Scholar 

  19. V. I. Arnold and B. Khesin Topological Methods in Hydrodynamics, Springer Verlag, New York (1998).

    MATH  Google Scholar 

  20. M. F. Atiyah, V. K. Patodi, and I. M. Singer, “Spectral asymmetry and Riemannian geometry, I,” Math. Proc. Cambridge Phil. Soc., 77, 43–69 (1975).

    MATH  MathSciNet  Google Scholar 

  21. M. F. Atiyah, V. K. Patodi, and I. M. Singer, “Spectral asymmetry and Riemannian geometry, II,” Math. Proc. Cambridge Phil. Soc., 78, 405–432 (1975).

    MATH  MathSciNet  Google Scholar 

  22. V. I. Averbukh and O. G. Smolyanov, “Differentiation theory in linear topological spaces,” Usp. Math. Nauk, 22, No. 6, 201–260 (1967).

    Google Scholar 

  23. V. I. Averbukh and O. G. Smolyanov, “Various definitions of the derivative in linear topological spaces,” Usp. Mat. Nauk, 23, No. 4, 67–116 (1968).

    Google Scholar 

  24. A. Banyaga, “On the group of equivariant diffeomorphisms,” Topology, 16, 279–283 (1977).

    MATH  MathSciNet  Google Scholar 

  25. A. Banyaga, “Sur la structure du groupe des diffeomorphismes qui preservent une forme symplectique,” Comment. Math. Helvet., 53, 174–227 (1978).

    MATH  MathSciNet  Google Scholar 

  26. A. Banyaga, “The group of diffeomorphisms preserving a regular contact form,” Monogr. Enseign. Math., 26, 47–53 (1978).

    MathSciNet  Google Scholar 

  27. A. Banyaga and J. Pulido, “On the group of contact diffeomorphisms of ℝ2n+1,” Bort. Soc. Matem. Mexicana, 23, No. 2, 43–47 (1978).

    MATH  MathSciNet  Google Scholar 

  28. A. Banyaga, “On fixed points of symplectic maps,” Invent Math., 56, 215–229 (1980).

    MathSciNet  Google Scholar 

  29. A. Banyaga, “Sur la cohomologie du groupe des diffeomorphismes,” C. R. Acad.Sci. Paris, Ser. I, 294, 625–627 (1982).

    MATH  MathSciNet  Google Scholar 

  30. A. Banyaga, “On isomorphic classical diffeomorphism groups, II,” J. Differ. Geom., 28, No. 1, 23–35 (1988).

    MATH  MathSciNet  Google Scholar 

  31. A. Banyaga, “Sur la groupe des diffeomorphismes symplectiques,” Lect. Notes. Math., 484, 50–56 (1975).

    MathSciNet  Google Scholar 

  32. A. Banyaga, The Structure of Classical Diffeomorphisms Groups, Kluwer Academic Publ., Amsterdam (1997).

    Google Scholar 

  33. D. Bao, J. Lafontaine, T. Ratiu, “On a nonlinear equation related to the geometry of the diffeomorphism groups,” Pac. J. Math., 158, 223–242 (1993).

    MathSciNet  Google Scholar 

  34. Yu. S. Baranov and Yu. E. Gliklikh, “A note on the regularity of solutions of the Euler equations of hydrodynamics,” Usp. Mat. Nauk, 36, No. 5, 163–164 (1981).

    MATH  MathSciNet  Google Scholar 

  35. Yu. S. Baranov and Yu. E. Gliklikh, “One mechanical connection of the volume-preserving diffeomorphism group,” Funkts. Anal. Prilozh., 22, No. 2, 61–62 (1988).

    MathSciNet  Google Scholar 

  36. Yu. S. Baranov and Yu. E. Gliklikh, “Some applications of the geometry of infinite-dimensional manifolds in hydrodynamics,” in: Geometry and Topology in Global Nonlinear Problems [in Russian], VGU, Voronezh (1984), pp. 142–158.

    Google Scholar 

  37. M. Benaim and J.-M. Gambaudo, “Metric properties of the group of area preserving diffeomorphisms,” Trans. Amer. Math. Soc., 353, No. 11, 4661–4672 (2001).

    MATH  MathSciNet  Google Scholar 

  38. D. Behheken, “Elliptic problems, Riemannian surfaces, and (M. Gromov) symplectic structures,” in: Mathematical Analysis and Geometry, Series “News in Foreign Science” [in Russian], 45, Mir, Moscow (1990), pp. 183–206.

    Google Scholar 

  39. M. Berger and D. Ebin, “Some decompositions of the space of symmetric tensors on a Riemannian manifold,” J. Differ. Geom., 3, No. 3, 379–392 (1969).

    MATH  MathSciNet  Google Scholar 

  40. A. Besse, Four-Dimensional Riemannian Geometry [Russian translation], Mir, Moscow (1985).

    Google Scholar 

  41. A. Besse, Einstein Manifolds, Vols. 1, 2 [Russian translation], Mir, Moscow (1990).

    MATH  Google Scholar 

  42. M. Bialy and L. Polterovich, “Hamiltonian diffeomorphisms and Lagrangian distribution,” Geom. Funct. Anal., 2, No. 2, 173–210 (1992).

    MATH  MathSciNet  Google Scholar 

  43. J. M. Bismut and J. Lott, “Flat vector bundles, direct images, and higher real analytic torsion,” J. Amer. Math. Soc., 8, 291–363 (1995).

    MATH  MathSciNet  Google Scholar 

  44. L. Bitam, FrSur la type d’homotopie des groupes classiques de diffeomorphismes, Thèse Doct. 3ème cycle Math. Pures Univ. Sci. et Med. Grenoble (1984).

  45. D. E. Blair, Contact Manifolds in Riemannian Geometry, Lect. Notes Math., 509, Springer-Verlag (1976).

  46. W. M. Boothby, “The transitivity of the automorphisms of certain geometric structures,” Trans. Amer. Math. Soc., 137, 93–100 (1969).

    MATH  MathSciNet  Google Scholar 

  47. R. Bott, “On the characteristic classes of group of diffeomorphisms,” Monogr. Enseign. Math., 26, 63–74 (1978).

    Google Scholar 

  48. S. Bouarroudj and V. Yu. Ovsienko, “Three cocycles on Di.(S 1) generalizing the Schwarzian derivative,” Int. Math. Res. Notices, 1, 25–39 (1998).

    MathSciNet  Google Scholar 

  49. R. Brooks, “Volumes and characteristic classes of foliations,” Topology, 18, 295–304 (1979).

    MATH  MathSciNet  Google Scholar 

  50. U. Bunke, Higher analytic torsion and cohomology of diffeomorphism groups, E-print dg-ga/9712001 (1997), http://xxx.lanl.gov.

  51. U. Bunke, “Higher analytic torsion of sphere bundles and continuous cohomology of Diff(S 2n−1),” E-print math.DG/9802100 (1998), http://xxx.lanl.gov.

  52. D. Burghelea, “On the homotopy type of Diff(M n) and connected problems,” Colloq. Int. CNRS, 7, No. 210, 3–17 (1973).

    MathSciNet  Google Scholar 

  53. E. Calabi, “On the group of automorphisms of a symplectic manifold,” in: Problems in Analysis. Symp. in Honor of S. Bochner, Princeton Univ. Press (1970), pp. 1–26.

  54. J. Cheeger and J. Simons, “Differential characters and geometric invariants,” Lect. Notes Math., 1167, 50–80 (1985).

    MathSciNet  Google Scholar 

  55. S. Chern and J. Simons, “Characteristic forms and geometric invariants,” Ann. Math., 99, No. 1, 48–69 (1974).

    MathSciNet  Google Scholar 

  56. P. R. Chernnoff, “Irreducible representations of infinite-dimensional transformation groups and Lie algebras,” Bull. Amer. Math. Soc., 13, No. 1, 46–48 (1985).

    MathSciNet  Google Scholar 

  57. Y. M. Choi, K. S. Soh, and J. H. Yoon, “Gravitations as gauge theory of diffeomorphism group,” Phys. Rev. D, 91, 1–10 1991.

    Google Scholar 

  58. A. Constantin and B. Kolev, “On the geometric approach to the motion inertial mechanical systems,” J. Phys. A, 35, R51–R79 (2002).

    MATH  MathSciNet  Google Scholar 

  59. A. Constantin and B. Kolev, “Geodesic flow on the diffeomorphism group of the circle,” Comment. Math. Helv., 78, 787–804 (2003).

    MATH  MathSciNet  Google Scholar 

  60. B. Dai and H.-Y. Wang, “A note on diffeomorphism groups of closed manifolds,” Ann. Global Anal. Geom., 21, No. 2, 135–140 (2002).

    MATH  MathSciNet  Google Scholar 

  61. A. A. Dezin, “Invariant forms and some structure properties of the Euler equations of hydrodynamics,” Z. Anal. Anwend., 2, 401–409 (1983).

    MATH  MathSciNet  Google Scholar 

  62. S. K. Donaldson, “Moment maps and diffeomorphisms,” Asian J. Math., 3, No. 1, 1–16 (1999).

    MATH  MathSciNet  Google Scholar 

  63. W. G. Dwyer and R. H. Szczarba, “Sur l’homotopie des groupes de diffeomorphismes,” C. R. Acad. Sci. Paris, Ser. A, 289, 417–419 (1979).

    MATH  MathSciNet  Google Scholar 

  64. C. J. Earle and J. Eells, “The diffeomorphism group of a compact Riemannian surface,” Bull. Amer. Math. Soc., 73, No. 4, 557–559 (1967).

    MathSciNet  Google Scholar 

  65. C. J. Earle and J. Eells, “A fibre bundle description of Teichmuller theory,” J. Differ. Geom., 3, 19–43 (1969).

    MATH  MathSciNet  Google Scholar 

  66. D. Ebin, “The manifold of Riemannian metrics,” Proc. Symp. Pure Math., 15, 11–40 (1970).

    MathSciNet  Google Scholar 

  67. D. Ebin, “Integrability of perfect fluid motion,” Commun. Pure Appl. Math., 36, No. 1, 37–54 (1983).

    MATH  MathSciNet  Google Scholar 

  68. D. Ebin and J. Marsden, “Groups of diffeomorphisms and the motion of an incompressible fluid,” Ann. Math., 92, No. 1, 102–163 (1970).

    MathSciNet  Google Scholar 

  69. J. Eells, “On the geometry of function spaces,” in: Symp. Topology Algebra, Mexico (1958), pp. 303–307.

  70. J. Eells, “On submanifolds of certain function spaces,” Proc. Natl. Acad. Sci., 45, No. 10, 1520–1522 (1959).

    MATH  MathSciNet  Google Scholar 

  71. J. Eells, “Alexander-Pontryagin duality in function spaces,” Proc. Symp. Pure Math., 3, 109–129 (1961).

    MathSciNet  Google Scholar 

  72. J. Eells, “A setting for global analysis,” Bull. Amer. Math. Soc., 72, 751–787 (1966).

    MathSciNet  Google Scholar 

  73. J. Eichhorn, “The manifold structure of maps between open manifolds,” Ann. Global Anal. Geom., 11, 253–300 (1993).

    MATH  MathSciNet  Google Scholar 

  74. J. Eichhorn, “Gauge theory on open manifolds of bounded geometry,” Int. J. Mod. Phys., 7, 3927–3977 (1993).

    MathSciNet  Google Scholar 

  75. J. Eichhorn, “Spaces of Riemannian metrics on open manifolds,” Results Math., 27, 256–283 (1995).

    MATH  MathSciNet  Google Scholar 

  76. J. Eichhorn and R. Schmid, “Form preserving diffeomorphisms on open manifolds,” Ann. Global Anal. Geom., 14, 147–176 (1996).

    MATH  MathSciNet  Google Scholar 

  77. J. Eichhorn, “Diffeomorphism groups on noncompact manifolds,” Zap. Nauch. Semin. POMI, 234, 41–64 (1996).

    Google Scholar 

  78. J. Eichhorn and J. Fricke, “The module structure theorem for Sobolev spaces on open manifolds,” Math. Nachr., 184, 35–47 (1998).

    MathSciNet  Google Scholar 

  79. J. Eichhorn, “Poincaré’s theorem and Teichmuller theory for open manifolds,” Asian J. Math., 2, No. 2, 355–404 (1998).

    MATH  MathSciNet  Google Scholar 

  80. J. Eichhorn, “A classification approach for open manifolds,” Zap. Nauchn. Semin. POMI, 267, 9–45 (2000).

    Google Scholar 

  81. Ya. Eliashberg and L. Polterovich, “Bi-invariant metrics on the group of Hamiltinian diffeomorphisms,” Int. J. Math., 4, No. 5, 727–738 (1993).

    MATH  MathSciNet  Google Scholar 

  82. Ya. Eliashberg and T. Ratiu, “The diameter of the symplectomorphism group is infinite,” Invent. Math., 103, No. 2, 327–340 (1991).

    MATH  MathSciNet  Google Scholar 

  83. H. Eliasson, “On the geometry of manifold of maps,” J. Differ. Geom., 1, 169–194 (1967).

    MATH  MathSciNet  Google Scholar 

  84. D. B. A. Epstein, “The simplicity of certain groups of homeomorphisms,” Compos. Math., 22, 165–173 (1970).

    MATH  Google Scholar 

  85. D. B. A. Epstein, “Commutators of C diffeomorphisms,” Comment. Math. Helv., 59, 111–122 (1984).

    MATH  MathSciNet  Google Scholar 

  86. J. Etnyre and R. Ghrist, Contact topology and hydrodynamics, II: Solid tori, E-print math.SG/9907112 (1999), http://xxx.lanl.gov.

  87. J. Etnyre and R. Ghrist, Contact topology and hydrodynamics, III: Knotted flowlines, E-print math-ph/9906021 (1999), http://xxx.lanl.gov.

  88. J. Etnyre and R. Ghrist, An index for closed orbits in Beltrami fields, E-print math.DS/0101095 (2001), http://xxx.lanl.gov.

  89. R. P. Filipkewicz, “Isomorphisms between diffeomorphism groups,” Ergodic Theor. Dynam. Syst., 2, 159–171 (1982).

    Google Scholar 

  90. A. Fischer and A. Tromba, “On a purely ’Riemannian’ proof of the structure and dimension of the unramiffed moduli space of a compact Riemannian surface,” Math. Ann., 267, 311–345 (1984).

    MATH  MathSciNet  Google Scholar 

  91. E. G. Floratos and J. Iliopoulos, “A note on the classical symmetries of the closed bosonic membranes,” Phys. Lett. B, 201, No. 2, 237–240 (1988).

    MathSciNet  Google Scholar 

  92. D. B. Fuks, “Cohomologies of infinite-dimensional Lie algebras and characteristic classes of foliations,” in: Progress in Science and Technology, Series on Contemporary Problems in Mathematics [in Russian], 10, All-Union Institute for Scientific and Technical Information, USSR Academy of Sciences, Moscow (1978), pp. 179–285.

    Google Scholar 

  93. D. B. Fuks, Cohomologies of Infinite-Dimensional Lie Algebras [in Russian], Nauka, Moscow (1984).

    Google Scholar 

  94. B. L. Feigin and D. B. Fuks, “Cohomologies of Lie groups and algebras,” in: Progress in Science and Technology, Series on Contemporary Problems in Mathematics, Fundamental Directions [in Russian], 21, All-Union Institute for Scientific and Technical Information, USSR Academy of Sciences, Moscow (1988), pp. 121–209.

    Google Scholar 

  95. K. Fukui and S. Ushiki, “On the homotopy type of FDiff \((S^3 ,\mathcal{F}_R )\),” J. Math. Kyoto Univ., 15, No. 1, 201–210 (1975).

    MATH  MathSciNet  Google Scholar 

  96. K. Fukui, “Homologies of the group of Diff(ℝn, 0),” J. Math. Kyoto Univ., 20, 475–487 (1980).

    MATH  MathSciNet  Google Scholar 

  97. I. M. Gel’fand and D. B. Fuks, “Cohomologies of Lie algebras of vector fields on the circle,” Functs. Anal. Prilozh., 2, No. 4, 92–93 (1968).

    MATH  MathSciNet  Google Scholar 

  98. V. L. Ginzburg, “Some remarks on symplectic actions of compact groups,” Math. Z., 210, 625–640 (1992).

    MATH  MathSciNet  Google Scholar 

  99. Yu. E. Gliklikh, Analysis on Riemannian Manifolds and Problems of Mathematical Physics [in Russian], VGU, Voronezh (1989).

    MATH  Google Scholar 

  100. K. Godbillon, Differential Geometry and Analytic Mechanics [Russian translation], Mir, Moscow (1973).

    Google Scholar 

  101. M. Golubitsky and V. W. Guillemin, Stable Mappings and Their Singularities, Grad. Texts Math., 14, Springer-Verlag (1973).

  102. J. Grabowski, “Free subgroups of diffeomorphisms groups,” Fundam. Math., 131, No. 2, 103–121 (1988).

    MATH  MathSciNet  Google Scholar 

  103. A. Gramain, “Le type d’homotopie du groupe des diffeomorphismes d’une surface compacte,” Ann. Sci. Ecole Norm. Super., 6, No. 1, 53–66 (1973).

    MATH  MathSciNet  Google Scholar 

  104. R. E. Greene and K. Shiohama, “Diffeomorphisms and volume-preserving embeddings of noncompact manifolds,” Trans. Amer. Math. Soc., 255, 403–414 (1979).

    MATH  MathSciNet  Google Scholar 

  105. M. Gromov, “Pseudoholomorphic curves in symplectic manifolds,” Invent. Math., 82, No. 2, 307–347 (1985).

    MATH  Google Scholar 

  106. M. Gromov, Partial Differential Relations [Russian translation], Mir, Moscow (1990).

    Google Scholar 

  107. M. Gromov, “Flexible and rigid symplecti topology,” in: Berkeley International Congress of Mathematicians, 1996, Overview Reports [in Russian], Mir, Moscow (1996), pp. 139–163.

    Google Scholar 

  108. D. Gromol, W. Klingenberg, and W. Meyer, Riemannian Geometry in the Large [Russian translation], Mir, Moscow (1971).

    Google Scholar 

  109. V. W. Guillemin, “Infinite-dimensional primitive Lie algebras,” J. Differ. Geom., 4, 257–282 (1970).

    MATH  MathSciNet  Google Scholar 

  110. S. Haller and T. Rybicki, On the perfectness of nontransitive groups of diffeomorphisms, E-print math.DG/9902095 (1999), http://xxx.lanl.gov.

  111. R. S. Hamilton, “The inverse function theorem of Nash and Moser,” Bull. Amer. Math. Soc., 7, No. 1, 65–222 (1982).

    MATH  MathSciNet  Google Scholar 

  112. D. Hart, “On the smoothness of generators,” Topology, 22, No. 3, 357–363 (1983).

    MATH  MathSciNet  Google Scholar 

  113. Y. Hatakeyama, “Some notes on the groups of automorphisms of contact and symplectic structures,” Tohoku Math. J., 18, 338–347 (1966).

    MATH  MathSciNet  Google Scholar 

  114. A. Hatcher, “A proof of the Smale conjecture Diff(S 3) ≅ O(4),” Ann. Math., 117, 553–607 (1983).

    MathSciNet  Google Scholar 

  115. A. Hatcher and D. McCullough, Finiteness of classifying spaces of relative diffeomorphism groups of 3-manifolds, E-print math.GT/9712260 (1997), http://xxx.lanl.gov.

  116. Y. Hattori, “Ideal magnetohydrodynamics and passive scalar motion as geodesics on semidirect product groups,” J. Phys. A: Math. Gen., 27, L21–L25 (1994).

    MathSciNet  Google Scholar 

  117. M. R. Herman, “Simplicite du groupe des diffeomorphismes de classe C , isotopes al’identite, du tore de dimension n,” C. R. Acad. Sci. Paris, Ser. A, 273, 232–234 (1971).

    MATH  MathSciNet  Google Scholar 

  118. M. R. Herman, “Sur la groupe des diffeomorphismes du tore,” Ann. Inst. Fourier, 23, No. 2, 75–86 (1973).

    MATH  MathSciNet  Google Scholar 

  119. M. R. Herman, “Sur la conjugaison differentiable des diffeomorphismes du cercle a des rotations,” Publ. Math. IHES, 49, 5–234 (1979).

    MATH  MathSciNet  Google Scholar 

  120. M. W. Hirsch, Differential Topology, Grad. Texts Math., 33, Springer-Verlag (1976).

  121. D. D. Holm, J. E. Marsden, and T. S. Ratiu, “Euler-Poincaré models of ideal fluids with nonlinear dispersion,” Phys. Rev. Lett., 349, 4173–4277 (1998).

    Google Scholar 

  122. D. D. Holm, J. E. Marsden, and T. S. Ratiu, “Euler-Poincaré equations and semidirect products with applications to continuum theories,” Adv. Math., 137, 1–81 (1998).

    MATH  MathSciNet  Google Scholar 

  123. H. Hofer, “Estimates for the energy of a symplectic map,” Comment. Math. Helv., 68, No. 1, 48–72 (1993).

    MATH  MathSciNet  Google Scholar 

  124. H. Hofer and E. Zehnder, Symplectic Invariants and Hamiltonian Dynamics, Birkhauser, Basel-Boston-Berlin (1994).

    MATH  Google Scholar 

  125. J. Hoppe, “DiffA T 2 and the curvature of some infinite dimensional manifolds,” Phys. Lett. B, 215, No. 4, 706–710 (1988).

    MathSciNet  Google Scholar 

  126. D. Husemoller, Fibre Bundles, McGraw-Hill (1966).

  127. R. S. Ismagilov, “On unitary representations of diffeomorphism groups of the circle,” Functs. Anal. Prilozh., 5, No. 3, 45–54 (1971).

    MathSciNet  Google Scholar 

  128. R. S. Ismagilov, “On unitary representations of diffeomorphisms groups of a compact manifold,” Izv. Akad. Nauk SSSR, Ser. Mat., 36, No. 1, 180–208 (1972).

    MATH  MathSciNet  Google Scholar 

  129. R. S. Ismagilov, “On unitary representations of diffeomorphism groups of the space ℝn, n ≥ 2,” Funkts. Anal. Prilozh., 9, 71–72 (1975).

    MathSciNet  Google Scholar 

  130. R. S. Ismagilov, “On unitary representation of diffeomorphism groups of the space C 0 (X,G), G = XU(2),” Mat. Sb., 100, No. 1, 117–131 (1976).

    MathSciNet  Google Scholar 

  131. R. S. Ismagilov, “Unitary representations of the measure-preserving diffeomorphism group,” Funkts. Anal. Prilozh., 1, No. 3, 80–81 (1977).

    Google Scholar 

  132. R. S. Ismagilov, “Inductive limits of the area-preserving diffeomorphism groups,” Funkts. Anal. Prilozh., 37, No. 3, 36–50 (2003).

    MathSciNet  Google Scholar 

  133. J. Kedra, “Remarks on the flux groups,” Math. Res. Lett., 7, 279–285 (2000).

    MATH  MathSciNet  Google Scholar 

  134. J. Kedra and D. McDuff, Homotopy properties of Hamiltonian group actions, E-print math.SG/0404539 (2004), http://xxx.lanl.gov.

  135. B. A. Khesin and Yu. V. Chekanov, “Invariants of the Euler equation for the ideal or barotropic hydrodynamics and superconductivity in D dimension,” Phys. D, 40, No. 1, 119–131 (1989).

    MATH  MathSciNet  Google Scholar 

  136. A. A. Kirillov, Elements of Representation Theory [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  137. A. A. Kirillov, “Infinite-dimensional Lie groups: Their orbits, invariants and representations. The geometry of moments,” Lect. Notes Math., 970, 101–123 (1982).

    MathSciNet  Google Scholar 

  138. A. A. Kirillov, “Kähler structure on K-orbits of diffeomorphisms group of the circle,” Funkts. Anal. Prilozh., 21, No. 2, 42–45 (1987).

    MathSciNet  Google Scholar 

  139. A. A. Kirillov, “The orbit method. I: Geometric quantization; II: Infinite-dimensional Lie groups and Lie algebras,” Contemp. Math., 145, 1–63 (1993).

    MathSciNet  Google Scholar 

  140. A. A. Kirillov and D. V. Yur’ev, “Kähler geometry of the infinite-dimensional homogeneous space M = Diff+(S 1)/S 1,” Funkts. Anal. Prilozh., 21, No. 4, 35–46 (1987).

    MathSciNet  Google Scholar 

  141. S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vols. 1, 2 [Russian translation], Nauka, Moscow (1981).

    Google Scholar 

  142. O. Kobayashi, A. Yoshioka, Y. Maeda, and H. Omori, “The theory of infinite-dimensional Lie groups and its applications,” Acta Appl. Math., 3, No. 1, 71–106 (1985).

    MATH  MathSciNet  Google Scholar 

  143. N. Kopell, “Commuting diffeomorphisms,” Proc. Symp. Pure Math., 14, Amer. Math. Soc., Providence, Rhode Island (1970), pp. 165–184.

    Google Scholar 

  144. B. Kostant, “Quantization and unitary representations,” Lect. Notes Math., 170, 87–208 (1970).

    MathSciNet  Google Scholar 

  145. F. Lalonde and D. McDu., “The geometry of symplectic energy,” Ann. Math., 141, No. 2, 319–333 (1995).

    Google Scholar 

  146. F. Lalonde, D. McDuff, and L. Polterovich, “On the flux conjectures,” CRM Proc. Lect. Notes, 15, Amer. Math. Soc., Providence, Rhode Island (1998), pp. 69–85.

    Google Scholar 

  147. F. Lalonde, D. McDuff, and L. Polterovich, “Topological rigidity of Hamiltonian loops and quantum cohomology,” Invent. Math., 135, 369–385 (1999).

    MathSciNet  Google Scholar 

  148. P. F. Lam, “Embedding a homeomorphism in a flow subject to differentiability conditions,” in: Topological Dynamics, Benjamin, New York (1968), pp. 319–333.

    Google Scholar 

  149. L. D. Landau and E. M. Lifshits, Theoretical Physics, Vol. 3, Quantum Mechanics [in Russian], Nauka, Moscow (1989).

    Google Scholar 

  150. S. Lang, Introduction to Differentiable Manifolds, New York (1962).

  151. J. Leslie, “On a differential structure for the group of diffeomorphisms,” Topology, 6, 263–271 (1967).

    MATH  MathSciNet  Google Scholar 

  152. M. V. Losik, “On Frech’et spaces as diffeologic spaces,” Izv. Vyssh. Ucheb. Zaved., Ser. Mat., 5, 36–42 (1992).

    MathSciNet  Google Scholar 

  153. A. M. Lukatskii, “Algebras of vector fields and diffeomorphism groups of compact manifolds,” Funkts. Anal. Prilozh., 8, No. 2, 87–88 (1974).

    Google Scholar 

  154. A. M. Lukatskii, “On generator systems in diffeomorphism groups of compact manifolds,” Dokl. Akad. Nauk SSSR, 220, No. 2, 285–288 (1975).

    MathSciNet  Google Scholar 

  155. A. M. Lukatskii, “On homogeneous vector bundles and diffeomorphism groups of compact homogeneous spaces, Izv. Akad. Nauk SSSR, Ser. Mat., 39, 1274–1285 (1975).

    MathSciNet  Google Scholar 

  156. A. M. Lukatskii, “On the structure of the Lie algebra of spherical vector fields and diffeomorphism groups,” Sib. Mat. Zh., 18, No. 1, 161–173 (1977).

    Google Scholar 

  157. A. M. Lukatskii, “Finite generation of diffeomorphism groups,” Usp. Mat. Nauk, 23, No. 1, 219–220 (1978).

    Google Scholar 

  158. A. M. Lukatskii, “On generator systems in the diffeomorphism group of the n-dimensional torus,” Mat. Zametki, 26, No. 1, 27–34 (1979).

    MathSciNet  Google Scholar 

  159. A. M. Lukatsky, “Construction of finite systems of generators for the Lie algebras of vector fields for group of diffeomorphisms of compact manifolds,” Select. Math. Sov., 1, No. 2, 185–195 (1981).

    Google Scholar 

  160. A. M. Lukatskii, “On the curvature of the measure-preserving diffeomorphism group of the two-dimensional sphere,” Funkts. Anal. Prilozh., 13, No. 3, 23–27 (1979).

    MathSciNet  Google Scholar 

  161. A. M. Lukatskii, “On the curvature of the measure-preserving diffeomorphism group of the ndimensional torus,” Sib. Math. Zh., 25, No. 6, 76–88 (1984).

    MathSciNet  Google Scholar 

  162. A. M. Lukatskii, “On the structure of the curvature tensor of the measure-preserving diffeomorphism group of a compact two-dimensional manifold,” Sib. Mat. Zh., 29, No. 6, 95–99 (1988).

    MathSciNet  Google Scholar 

  163. A. M. Lukatsky, “On the curvature of the diffeomorphisms group,” Ann. Global Anal. Geom., 11, 135–140 (1993).

    MATH  MathSciNet  Google Scholar 

  164. J. N. Mather, “Commutators of diffeomorphisms,” Comment. Math. Helv., 49, 512–528 (1974).

    MATH  MathSciNet  Google Scholar 

  165. J. N. Mather, “Commutators of diffeomorphisms, II,” Comment. Math. Helv., 50, 33–40 (1975).

    MATH  MathSciNet  Google Scholar 

  166. J. N. Mather, “A curious remark concerning the geometric transfer map,” Comment. Math. Helv., 59, 86–110 (1984).

    MATH  MathSciNet  Google Scholar 

  167. J. N. Mather, “Commutators of diffeomorphisms, III,” Comment. Math. Helv., 60, No. 1, 122–124 (1985).

    MATH  MathSciNet  Google Scholar 

  168. D. McDuff, “The lattice of normal subgroups of the group of diffeomorphisms or homeomorphisms of an open manifold,” J. London Math. Soc., 18, No. 2, 353–364 (1978).

    MathSciNet  Google Scholar 

  169. D. McDuff, “The homology of some groups of diffeomorphisms,” Comment. Math. Helv., 55, 97–120 (1980).

    MATH  MathSciNet  Google Scholar 

  170. D. McDuff, “Local homology of groups of volume-preserving diffeomorphisms, I,” Ann. Sci. Éc. Norm. Super., 15, 609–648 (1982).

    MATH  MathSciNet  Google Scholar 

  171. D. McDuff, “Local homology of groups of volume-preserving diffeomorphisms, II,” Comment. Math. Helv., 58, 135–165 (1983).

    MATH  MathSciNet  Google Scholar 

  172. D. McDuff, “Local homology of groups of volume-preserving diffeomorphisms, III,” Ann. Sci. Éc. Norm. Super., Ser. 4, 16, 529–540 (1983).

    MATH  MathSciNet  Google Scholar 

  173. D. McDuff, “Some canonical cohomology classes on groups of volume preserving diffeomorphisms,” Trans. Amer. Math. Soc., 275, No. 1, 345–356 (1983).

    MATH  MathSciNet  Google Scholar 

  174. D. McDuff, “Symplectic diffeomorphisms and the flux homomorphism,” Invent. Math., 77, No. 2, 353–366 (1984).

    MATH  MathSciNet  Google Scholar 

  175. D. McDuff, “Remarks on the homotopy type of groups of symplectic diffeomorphisms,” Proc. Amer. Math. Soc., 94, No. 2, 348–352 (1985).

    MATH  MathSciNet  Google Scholar 

  176. D. McDuff, “The moment map for circle actions on symplectic manifolds,” J. Geom. Phys., 5, 149–161 (1988).

    MATH  MathSciNet  Google Scholar 

  177. D. McDuff, Lectures on groups of symplectomorphisms, E-print mathDG/0201032 (2002), http://xxx.lanl.gov.

  178. D. McDuff, A survey of the topological properties of symplectomorphism groups, E-print math.SG/0404340 (2004), http://xxx.lanl.gov.

  179. J. Marsden, D. Ebin, and A. Fisher, “Diffeomorphism groups, hydrodynamics, and relativity,” in: 13th Biennial Seminar of Canad. Math. Congress (J. Vanstone, ed.), Montreal (1972), pp. 135–279.

  180. J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry, Springer-Verlag (1999).

  181. J. E. Marsden, T. S. Ratiu, and S. Shkoller, “The geometry and analysis of the averaged Euler equations and a new diffeomorphism group,” Geom. Funct. Anal., 10, 582–599 (2000).

    MATH  MathSciNet  Google Scholar 

  182. J. Marsden, T. Ratiu, and A. Weinstein, “Semidirect products and reduction in mechanics,” Trans. Amer. Math. Soc., 281, No. 1, 147–177 (1984).

    MATH  MathSciNet  Google Scholar 

  183. J. Marsden and A. Weinstein, “The Hamiltonian structure of the Maxwell-Vlasov equations,” Phys. D, 4, 394–406 (1982).

    MathSciNet  Google Scholar 

  184. J. E. Marsden and A. Weinstein, “Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids,” Phys. D, 7, 305–323 (1983).

    MathSciNet  Google Scholar 

  185. J. N. Mather, “Simplicity of certain groups of diffeomorphisms,” Bull. Amer. Math. Soc., 80, No. 2, 211–273 (1974).

    MathSciNet  Google Scholar 

  186. W. Michor, “The cohomology of the diffeomorphism group of a manifold is a Gelfand-Fuks cohomology,” Rend. Circ. Mat. Palermo, 36, Suppl. 14, 235–246 (1987).

    MathSciNet  Google Scholar 

  187. W. Michor and C. Vizman, “n-Transitivity of certain diffeomorphism groups,” Acta Math. Univ. Comenianae, 63, No. 2, 1–4 (1994).

    MathSciNet  Google Scholar 

  188. J. W. Milnor, “On spaces having the homotopy type of a CW complex,” Trans. Amer. Math. Soc., 90, 272–280 (1959).

    MathSciNet  Google Scholar 

  189. J. W. Milnor, “Remarks on infinite-dimensional Lie groups,” in: Relativity, Groups, and Topology, II (B. S. de Witt and R. Stora, eds.), North-Holland, Amsterdam (1984), pp. 1007–1058.

    Google Scholar 

  190. A. S. Mishchenko and A. T. Fomenko, “Euler equations on finite-dimensional Lie groups,” Izv. Akad. Nauk SSSR, Ser. Mat., 42, No. 2, 396–415 (1978).

    MATH  MathSciNet  Google Scholar 

  191. G. Misiolek, “Stability of flows of ideal fluids and the geometry of the group of diffeomorphisms,” Indiana Univ. Math. J., 2, 215–235 (1993).

    MathSciNet  Google Scholar 

  192. G. Misiolek, “Conjugate points in \(\mathcal{D}_\mu (T^2 )\),” Proc. Amer. Math. Soc., 124, 977–982 (1996).

    MATH  MathSciNet  Google Scholar 

  193. G. Misiolek, “A shallow water equation as a geodesic flow on the Bott-Virasoro group,” J. Geom. Phys., 24, 203–208 (1998).

    MATH  MathSciNet  Google Scholar 

  194. G. Misiolek, “The exponential map on the free loop spaces is Fredholm,” Geom. Funct. Anal., 7, 954–969 (1997).

    MATH  MathSciNet  Google Scholar 

  195. D. Montgomery and L. Zippin, Transformation Groups, Interscience, New York (1955).

    MATH  Google Scholar 

  196. T. Morimoto and N. Tanaka, “The classification of real primitive infinite Lie algebras,” J. Math. Kyoto Univ., 10, 207–243 (1970).

    MATH  MathSciNet  Google Scholar 

  197. J. Moser, “On the volume elements on a manifold,” Trans. Amer. Math. Soc., 120, 286–294 (1965).

    MATH  MathSciNet  Google Scholar 

  198. S. Nag and A. Verjovsky, “Diff(S 1) and the Teichmuller spaces,” Commun. Math. Phys., 130, No. 1, 123–138 (1990).

    MATH  MathSciNet  Google Scholar 

  199. F. Nakamura, Y. Hattori, and T. Kambe, “Geodesics and curvature of a group of diffeomorphisms and motion of an ideal fluid,” J. Phys. A: Math. Gen., 25, L45–L50 (1992).

    MathSciNet  Google Scholar 

  200. N. Nakanishi, “On the structure of infinite transitive primitive Lie algebras,” Proc. Jpn. Acad., 52, 14–16 (1976).

    MATH  MathSciNet  Google Scholar 

  201. R. Narasimhan, Analysis on Real and Complex Manifolds [Russian translation], Mir, Moscow (1971).

    Google Scholar 

  202. Z. Nitecki, Differentiable Dynamics. An Introduction to the Orbit Structure of Diffeomorphisms, The MIT Press (1971).

  203. H. Omori, “On the group of diffeomorphisms on a compact manifold,” Proc. Symp. Pure Math., 15, 167–183 (1970).

    MathSciNet  Google Scholar 

  204. H. Omori, “Local structures of groups of diffeomorphisms,” J. Math. Soc. Jpn., 24, No. 1, 60–88 (1972).

    MATH  MathSciNet  Google Scholar 

  205. H. Omori, “On smooth extension theorems,” J. Math. Soc. Jpn., 24, No. 3, 405–432 (1972).

    MATH  MathSciNet  Google Scholar 

  206. H. Omori, “Group of diffeomorphisms and their subgroups,” Trans. Amer. Math. Soc., 179, 85–122 (1973).

    MATH  MathSciNet  Google Scholar 

  207. H. Omori, Infinite-Dimensional Lie Transformations Groups, Lect. Notes Math., 427 (1974).

  208. H. Omori and P. Harpe, “About interactions between Banach-Lie groups and finite-dimensional manifolds,” J. Math. Kyoto Univ., 12, No. 3, 543–570 (1972).

    MATH  MathSciNet  Google Scholar 

  209. K. Ono, “Some remarks on group actions in symplectic geometry,” J. Fac. Sci. Univ. Tokyo, Sec. IA, 35, 431–437 (1988).

    MATH  Google Scholar 

  210. K. Ono, “Equivariant projective imbeddings theorem for symplectic manifolds,” J. Fac. Sci. Univ. Tokyo, Sec. IA, 35, 381–392 (1988).

    MATH  Google Scholar 

  211. V. Yu. Ovsienko, B. A. Khesin, and Yu. V. Chekanov, “Integrals of the Euler equations in multidimensional hydrodynamics and superconductivity,” J. Sov. Math., 59, No. 5, 1096–1102 (1992).

    MathSciNet  Google Scholar 

  212. R. Palais, “Homotopy theory of infinite-dimensional manifolds,” Topology, 5, 1–16 (1966).

    MATH  MathSciNet  Google Scholar 

  213. R. Palais, Foundations of Global Nonlinear Analysis, Benjamin, New York (1968).

    Google Scholar 

  214. R. Palais, Seminar on the Atiyah-Singer Index Theorem [Russian translation], Mir, Moscow (1970).

    MATH  Google Scholar 

  215. R. Palais and T. E. Stewart, “The cohomology of differentiable transformation groups,” Amer. J. Math., 83, No. 4, 623–644 (1961).

    MATH  MathSciNet  Google Scholar 

  216. J. Palis, “Vector fields generate few diffeomorphisms,” Bull. Amer. Math. Soc., 80, No. 3, 503–505 (1974).

    MATH  MathSciNet  Google Scholar 

  217. J. Palis and J. C. Yoccoz, “Rigidity of centralizers of diffeomorphisms,” Ann. Sci. Éc. Norm. Super., Ser. 4, 22, 81–98 (1989).

    MATH  MathSciNet  Google Scholar 

  218. M. A. Parinov, “On the groups of diffeomorphism preserving nondegenerate analytic covector fields,” Mat. Sb., 186, No. 5, 115–126 (1995).

    MathSciNet  Google Scholar 

  219. J. F. Plante, “Diffeomorphisms without periodic points,” Proc. Amer. Math. Soc., 88, 716–718 (1983).

    MATH  MathSciNet  Google Scholar 

  220. A. Pressly and G. Segal, Loop Groups, Oxford Math. Monogr., Clarendon Press, Oxford (1988).

    Google Scholar 

  221. T. Ratiu and R. Schmid, “The differentiable structure of three remarkable diffeomorphisms groups,” Math. Z., 177, 81–100 (1981).

    MATH  MathSciNet  Google Scholar 

  222. A. Reznikov, “Continuous cohomology of the group of volume-preserving and symplectic diffeomorphisms, measurable transfer and higher asymptotic cycles,” Select. Math. New Ser., 5, 181–198 (1999).

    MATH  MathSciNet  Google Scholar 

  223. P. Rouchon, “The Jacobi equation, Riemannian curvature, and the motion of a perfect incompressible fluid,” Eur. J. Mech., 11, No. 3, 317–336 (1992).

    MATH  MathSciNet  Google Scholar 

  224. W. Rudin, Mathematical Analysis [Russian translation], Mir, Moscow (1975).

    Google Scholar 

  225. T. Rybicki, “A note on groups of symplectomorphisms,” Ann. Sci. Math. Pol., Ser. I, 38, 115–126 (1998).

    MATH  MathSciNet  Google Scholar 

  226. E. Shavgulidze “Quasi-invariant measures on diffeomorphism groups,” Tr. Mat. Inst. Ross. Akad. Nauk, 217, 189–208 (1997).

    MathSciNet  Google Scholar 

  227. E. V. Shchepin, “Hausdorff dimension and dynamics of diffeomorphisms,” Mat. Zametki, 65, No. 3, 457–463 (1999).

    MathSciNet  Google Scholar 

  228. L. I. Sedov, Continuous-Medium Mechanics, Vol. 1 [in Russian], Mir, Moscow (1973).

    Google Scholar 

  229. A. G. Sergeev, Kahler Geometry of Loop Spaces [in Russian], Moscow (2001).

  230. D. Serre, “Invariants et degenerescence symplectique de l’equation d’Euler des fluids parfaits incompressibles,” C. R. Acad. Sci. Paris, Ser. A, 298, 349 (1984).

    MATH  MathSciNet  Google Scholar 

  231. H. Shimomura, “Quasi-invariant measures on the group of diffeomorphisms and smooth vectors of unitary representations,” J. Funct. Anal., 187, 406–441 (2001).

    MATH  MathSciNet  Google Scholar 

  232. S. Shkoller, “Geometry and curvature of diffeomorphism groups with H 1 metric and mean hydrodynamics,” J. Funct. Anal., 160, 337–365 (1998).

    MATH  MathSciNet  Google Scholar 

  233. S. Shkoller, Groups of diffeomorphisms for manifolds with boundary and hydrodynamics, Preprint (1999).

  234. S. Shnider, “The classification of real primitive infinite Lie algebras,” J. Differ. Geom., 4, 81–89 (1970).

    MATH  MathSciNet  Google Scholar 

  235. A. I. Shnirelman, “On geometry of the diffeomorphism group and dynamics of ideal incompressible fluid,” Mat. Sb., 128, No. 1, 82–109 (1985).

    MathSciNet  Google Scholar 

  236. A. Shnirelman, “Attainable diffeomorphisms,” Geom. Funct. Anal., 3, No. 3, 297–294 (1993).

    MathSciNet  Google Scholar 

  237. A. Shnirelman, “Generalized fluid flows, their approximation and applications,” Geom. Funct. Anal., 4, No. 5, 586–620 (1994).

    MATH  MathSciNet  Google Scholar 

  238. A. Shnirelman, “Evolution of singularities, generalized Liapunov function and generalized integral for an ideal incompressible fluid,” Amer. J. Math., 119, No. 3, 579–608 (1997).

    MATH  MathSciNet  Google Scholar 

  239. I. M. Singer and S. Sternberg, “On the infinite groups of Lie and Cartan, I,” J. Anal. Math., 15, 1–114 (1965).

    MATH  MathSciNet  Google Scholar 

  240. S. Smale, “Diffeomorphisms of the 2-sphere,” Proc. Amer. Math. Soc., 10, 621–626 (1959).

    MATH  MathSciNet  Google Scholar 

  241. S. Smale, “A survey of some recent developements in differential topology,” Bull. Amer. Math. Soc., 69, 131–185 (1963).

    MathSciNet  Google Scholar 

  242. S. Smale, “Differentiable dynamics systems,” Bull. Amer. Math. Soc., 73, 747–817 (1967).

    MathSciNet  Google Scholar 

  243. S. Smale, “Topology and mechanics,” Usp. Mat. Nauk, 27, No. 2, 77–133 (1972).

    MathSciNet  Google Scholar 

  244. N. K. Smolentsev, “First integrals of ideal barotropic fluid flows,” in: All-Russian Conference on Contemporary Problems in Geometry, Abstracts of Reports [in Russian], Minsk (1979), p. 182.

  245. N. K. Smolentsev, “On the Maupertuis principle,” Sib. Mat. Zh., 20, No. 5, 1092–1098 (1979).

    MathSciNet  Google Scholar 

  246. N. K. Smolentsev, “On a certain weak Riemannian structure on the diffeomorphism group,” Izv. Vyssh. Ucheb. Zaved., Ser. Mat., 5, 78–80 (1979).

    MathSciNet  Google Scholar 

  247. N. K. Smolentsev, “Integrals of ideal barotropic fluid flows,” Sib. Math. Zh., 23, No. 1, 205–208 (1982).

    MATH  MathSciNet  Google Scholar 

  248. N. K. Smolentsev, “Bi-invariant metric on the diffeomorphism group of a three-dimensional manifold,” Sib. Mat. Zh., 24, No. 1, 152–159 (1983).

    MathSciNet  Google Scholar 

  249. N. K. Smolentsev, “On the group of diffeomorphisms leaving a vector field fixed,” Sib. Mat. Zh., 25, No. 2, 180–185 (1984).

    MathSciNet  Google Scholar 

  250. N. K. Smolentsev, “On the vector product on a seven-dimensional manifold,” Sib. Math. Zh., 25, No. 5, 157–167 (1984).

    MathSciNet  Google Scholar 

  251. N. K. Smolentsev, “Bi-invariant metrics on certain diffeomorphism groups,” in: Function Theory and Its Applications, Collection of Scientific Works [in Russian], Kemerovo (1985), pp. 73–78.

  252. N. K. Smolentsev, “Bi-invariant metrics on the symplectic diffeomorphism group and the equation \(\frac{\partial }{{\partial t}}\Delta F = \{ \Delta F,F\} \),” Sib. Mat. Zh., 27, No. 1, 150–156 (1986).

    MathSciNet  Google Scholar 

  253. N. K. Smolentsev, “Geometric properties of the action of the exact symplectic diffeomorphism group on the space of associated metrics,” in: Geometry and Analysis [in Russian], Kemerovj (1991), pp. 31–36.

  254. N. K. Smolentsev, “Curvature of the diffeomorphism group and volume element space,” Sib. Mat. Zh., 33, No. 4, 115–141 (1992).

    MathSciNet  Google Scholar 

  255. N. K. Smolentsev, “Curvature of the classical diffeomorphism groups,” Sib. Mat. Zh., 74, No. 1, 169–176 (1994).

    MathSciNet  Google Scholar 

  256. S. E. Stepanov and I. G. Shandra, “Seven classes of harmonic diffeomorphisms,” Mat. Zametki, 74, No. 5, 752–761 (2003).

    MathSciNet  Google Scholar 

  257. S. E. Stepanov and I. G. Shandra, “Geometry of infinitesimal harmonic transformations,” Ann. Global Anal. Geom., 24, No. 3, 291–299 (2003).

    MATH  MathSciNet  Google Scholar 

  258. S. Sternberg, Lectures on Differential Geometry, Prentice Hall, Englewood Cliffs, New Jersey (1964).

    MATH  Google Scholar 

  259. F. Takens, “Characterization of a differentiable structure by its group of diffeomorphisms,” Bol. Soc. Bras. Math., 10, No. 1, 17–26 (1979).

    MATH  MathSciNet  Google Scholar 

  260. W. Thurston, “Foliations and groups of diffeomorphisms,” Bull. Amer. Math. Soc., 80, No. 2, 04–307 (1974).

    MathSciNet  Google Scholar 

  261. A. M. Vershik, I. M. Gel’fand, and M. I. Graev, “Representations of diffeomorphism groups,” Usp. Mat. Nauk, 30, No. 6, 3–50 (1975).

    MATH  Google Scholar 

  262. A. M. Vershik, “Description of invariant measures for actions of certain infinite-dimensional groups,” Dokl. Akad. Nauk SSSR, 218, No. 4, 749–752 (1974).

    MathSciNet  Google Scholar 

  263. N. Ya. Vilenkin, Special Functions and Group Representation Theory [in Russian], Nauka, Moscow (1965).

    Google Scholar 

  264. A. M. Vinogradov and I. S. Krasil’shchik, “What is Hamiltonian formalism?” Usp. Mat. Nauk, 30, No. 1, 173–198 (1975).

    Google Scholar 

  265. A. M. Vinogradov and B. A. Kupershmidt, “Structure of Hamiltonian mechanics,” 32, No. 4, 175–236 (1977).

    MATH  MathSciNet  Google Scholar 

  266. C. Vizman, Coadjoint orbits in infinite dimensions, Preprint (1995).

  267. N. Watanabe, “Existence of volume preserving diffeomorphisms without periodic points on three-dimensional manifolds,” Proc. Amer. Math. Soc., 97, No. 4, 724–726 (1986).

    MATH  MathSciNet  Google Scholar 

  268. A. Weinstein, Lectures on Symplectic Manifolds, Amer. Math. Soc. Conf. Board., Reg. Conf. Math., 29, Providence, Rhode Island (1977).

  269. M. Wolf, “The Teichmuller theory of harmonic maps,” J. Differ. Geom., 29, No. 2, 449–479 (1989).

    MATH  Google Scholar 

  270. T. Yagasaki, Homotopy types of diffeomorphism groups of noncompact 2-manifolds, E-print math.GT/0109183 (2001), http://xxx.lanl.gov.

  271. S. Yamada, “Weil-Peterson convexity of the energy functional on classical and universal Teichmuller spaces,” J. Differ. Geom., 51, 35–96 (1999).

    MATH  Google Scholar 

  272. K. Yoshida, “Riemannian curvature on the group of area-preserving diffeomorphisms (motions of fluid) on 2-sphere,” Phys. D, 100, Nos. 3–4, 377–389 (1997).

    MATH  MathSciNet  Google Scholar 

  273. V. A. Zaitseva, V. V. Kruglov, A. G. Sergeev, M. S. Strigunova, and K. A. Trushkin, “Remarks on loop groups of compact Lie groups and the diffeomorphism group of the circle,” Tr. Mat. Inst. Ross. Akad. Nauk, 224 (1999).

  274. V. Zeitlin and T. Kambe, “Two-dimensional ideal magnetohydrodynamics and differential geometry,” J. Phys. A: Math. Gen., 26, 5025–5031 (1993).

    MATH  MathSciNet  Google Scholar 

Download references

Authors

Additional information

__________

Translated from Sovremennaya Matematika i Ee Prilozheniya (Contemporary Mathematics and Its Applications), Vol. 37, Geometry, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smolentsev, N.K. Diffeomorphism groups of compact manifolds. J Math Sci 146, 6213–6312 (2007). https://doi.org/10.1007/s10958-007-0471-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-007-0471-0

Keywords

Navigation