Skip to main content
Log in

Variation formulas of solutions and optimal control problems for differential equations with retarded argument

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

The authors prove a theorem on the continuous dependence of solutions of nonlinear systems of differential equations with variable delay on the perturbations of initial data (initial instant, initial function, and initial value of the trajectory) and the right-hand side in the case where these perturbations are small in the Euclidean and integral topology, respectively. The variation formulas of solutions of a differential equation with discontinuous and continuous initial condition are deduced; as compared with those known earlier, these formulas take into account the variation of the initial instant and the discontinuity and continuity of the initial data. A necessary condition for criticality of mappings defined on a finitely locally convex set is obtained. The quasiconvexity of filters in studying optimal problems with delays in controls is proved. Necessary optimality conditions and existence theorems are proved for optimal problems with variable delays in phase coordinates and controls having a nonfixed initial instant, a discontinuous and a continuous initial condition, and functional and boundary conditions of general form. Necessary optimality conditions are obtained for optimal problems with variable structure and delays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Abuladze, Optimal Control Problems for Systems Described by Integral Equations [in Russian], Tbilis. Univ., Tbilisi (1988).

    MATH  Google Scholar 

  2. A. P. Afanas’ev, V. V. Dikusar, A. A. Milyutin, and S. A. Chukanov, Necessary Condition in Optimal Control [in Russian], Nauka, Moscow (1990).

    MATH  Google Scholar 

  3. A. A. Agrachev and R. V. Gamkrelidze, “Second-order optimality principle for a time-optimal control problem,” Mat. Sb., 100, No. 4, 610–643 (1976).

    MathSciNet  Google Scholar 

  4. M. Akian, P. Bliman, and M. Sorine, “Control of delay systems with relay,” IMA J. Math. Control Inform., 19, 133–155 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  5. V. M. Alekseev, V. M. Tikhomirov, and S. V. Fomin, Optimal Control [in Russian], Nauka, Moscow (1979).

    Google Scholar 

  6. L. Alkhazishvili, “The linearized maximum principle for optimal problems with variable delays and continuous initial condition,” Mem. Differential Equations Math. Phys., 29, 153–155 (2003).

    MathSciNet  MATH  Google Scholar 

  7. T. S. Angel, “Existence theorems for optimal control problems involving functional differential equations,” J. Optim. Theory Appl., 7, 149–189 (1971).

    Article  Google Scholar 

  8. H. A. Antosievicz, “Linear control systems,” Arch. Rat. Mech. Anal., 12, No. 4, 313–324 (1963).

    Article  Google Scholar 

  9. A. I. Arsenashvili, “Optimal control problem for step-like systems with delays,” Trudy ISU Akad. Nauk GSSR, 1, No. 24, 17–29 (1985).

    MathSciNet  Google Scholar 

  10. A. V. Arutyunov, “Perturbations of constrained extremal problems and necessary optimality conditions,” In: Progress in Science and Technology, Series on Mathematical Analysis [in Russian], 27, All-Union Institute for Scientific and Technical Information, USSR Academy of Science, Moscow (1989), pp. 147–235.

    Google Scholar 

  11. T. L. Ashchepkov, Optimal Control of Discontinuous Systems [in Russian], Nauka, Moscow (1987).

    MATH  Google Scholar 

  12. M. T. Ashordia, “On the stability of solution of linear boundary value problems for the system of ordinary differential equations,” Proc. Georgian Acad. Sci. Math. 1, No. 2, 129–141 (1993).

    MathSciNet  MATH  Google Scholar 

  13. M. Athans and P. Falb, Optimal Control [Russian translation], Mashinostroenie, Moscow (1968).

    MATH  Google Scholar 

  14. N. M. Avalishvili, “Maximum principle for variable-structure optimal problems with delay,” in: Variable-Structure Optimal Problems [in Russian], Tbilis. Univ., Tbilisi (1985), pp. 48–72.

    Google Scholar 

  15. N. V. Azbelev and L. F. Rakhmatulina, “Theory of linear abstract functional-differential equations and applications,” Mem. Differential Equations Math. Phys., 8, 2–102 (1996).

    Google Scholar 

  16. T. G. Babunashvili, “Synthesis of linear optimal systems,” Dokl. Akad. Nauk SSSR, 155, No. 2, 295–298 (1964).

    MathSciNet  Google Scholar 

  17. A. Balakrishnan, Introduction to Optimization Theory in Hilbert Space [Russian translation], Mir, Moscow (1974).

    MATH  Google Scholar 

  18. H. T. Banks, “Necessary conditions for control problems with variable time lags,” SIAM J. Control, 6, 9–47 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  19. H. T. Banks, “Modelling and control in the biomedical sciences,” Lecture Notes in Biomath., Vol. 6, Springer-Verlag (1975).

  20. L. A. Beklaryan, “Variational problem with retarded argument and its relation to a semigroup of self-mapping of a closed interval,” Dokl. Akad. Nauk SSSR, 271, No. 5, 1034–1040 (1983).

    MathSciNet  Google Scholar 

  21. R. Bellman, I. Glicksberg, and O. Gross, Some Aspects of the Mathematical Theory of Control Processes [Russian translation], Inostrannaya Literatura, Moscow (1962).

    MATH  Google Scholar 

  22. R. Bellman and K. Cooke, Differential-Difference Equations [Russian translation], Mir, Moscow (1967).

    MATH  Google Scholar 

  23. L. D. Berkovitz, “Existence theory for optimal control problems,” Optimal Control and Differential Equations, Academic Press, New York (1978), pp. 107–130.

    Google Scholar 

  24. V. I. Blagodatskikh, “Maximum principle for differential inclusions,” Trudy Mat. Inst. Akad. Nauk SSSR, 166, 23–43 (1984).

    MathSciNet  MATH  Google Scholar 

  25. V. G. Boltyanskii, Mathematical Methods of Optimal Control [in Russian], Nauka, Moscow (1969).

    Google Scholar 

  26. V. G. Boltyanskii, “Tent method in the theory of extremal problems,” Usp. Mat. Nauk, 30, No. 3, 3–55 (1975).

    Google Scholar 

  27. V. G. Boltyanskii, “Optimization problem with change of the state space,” Differents. Uravn., 19, No. 3, 518–521 (1983).

    MathSciNet  Google Scholar 

  28. L. Cesari, “An existence theorem in problems of optimal control,” SIAM J. Control, A3, No. 1, 7–22 (1965).

    Article  MathSciNet  Google Scholar 

  29. F. L. Chernous’ko and N. V. Banichuk, Variational Problems of Mechanics and Control [in Russian], Nauka, Moscow (1973).

    Google Scholar 

  30. F. H. Clarke, Optimization and Non-Smooth Analysis, Wiley, New York (1983).

    Google Scholar 

  31. C. Corduneanu, “Existence of solutions for neutral functional differential equations with causal operators,” J. Differential Equations, 168, 93–101 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  32. R. Datko, “Representation of solutions and stability of linear differential-difference equations in Banach space,” J. Differential Equations, 29, No. 1, 105–166 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  33. V. F. Dem’yanov, “On necessary extremality conditions in hereditary problems,” Dokl. Akad. Nauk SSSR, 166, No. 2, 275–277 (1966).

    MathSciNet  Google Scholar 

  34. A. Donchev, Optimal Control Systems [in Russian], Mir, Moscow (1987).

    MATH  Google Scholar 

  35. R. D. Driver, Ordinary and Delay Differential Equations, Springer, New York (1977).

    MATH  Google Scholar 

  36. A. Ya. Dubovitskii and A. A. Milyutin, Necessary Conditions for Weak Minimum in the General Optimal Control Problem [in Russian], Nauka, Moscow (1971).

    Google Scholar 

  37. P. Dvalishvili and T. Tadumadze, “Continuous dependence of the solution of the differential equation with distributed delay on the initial data and right-hand side,” Seminar of I. Vekua Inst. Appl. Math. Reports, 26–27, No. 15, 15–30 (2000–2001).

    MathSciNet  Google Scholar 

  38. D. Dzhgarkava, “Problem of optimal control with one-side mixed restrictions for controlled objects described by integral equations with measure,” Mem. Differential Equations Math. Phys., 11, 9–46 (1977).

    MathSciNet  Google Scholar 

  39. I. Ekeland and R. Temam, Convex Analysis and Extremal Problems [Russian translation], Mir, Moscow (1979).

    Google Scholar 

  40. L. E. El’sgolts and S. B. Norkin, Introduction to the Theory of Differential Equations with Deviated Argument [in Russian], Nauka, Moscow (1971).

    Google Scholar 

  41. W. K. Ergen, “Kinetics of the circulating-fuel nuclear reactor,” J. Appl. Phys., 15, 702–711 (1954).

    Article  Google Scholar 

  42. R. P. Fedorenko, Approximate Solution of Optimal Control Problems [in Russian], Nauka, Moscow (1978).

    MATH  Google Scholar 

  43. A. F. Filippov, “On certain problems in optimal regulation theory,” Vestn. MGU, Ser. Mat., Mekh., Astr., Fiz., Khim., No. 2, 25–32 (1959).

  44. R. Gabasov and F. Kirillova, Qualitative Theory of Optimal Processes [in Russian], Nauka, Moscow (1971).

    Google Scholar 

  45. R. Gabasov and F. M. Kirillova, Constructive Optimization Methods. Part 2. Control Problems [in Russian], Universitetskoe, Minsk (1984).

    MATH  Google Scholar 

  46. R. V. Gamkrelidze, “On sliding optimal regimes,” Dokl. Akad. Nauk SSSR, 143, No. 6, 1243–1245 (1962).

    MathSciNet  Google Scholar 

  47. R. V. Gamkrelidze, “On some extremal problems in the theory of differential equations with application to the theory of optimal control,” SIAM J. Control, 3, 106–128 (1965).

    Article  MathSciNet  Google Scholar 

  48. R. V. Gamkrelidze, “First-order necessary conditions and axiomatics of extremal problems,” Trudy Mat. Inst. Akad. Nauk SSSR, 122, 152–180 (1971).

    MathSciNet  Google Scholar 

  49. R. V. Gamkrelidze, Foundations of Optimal Control [in Russian], Tbilis. Univ., Tbilisi (1977).

    Google Scholar 

  50. R. V. Gamkrelidze, “Discovery of the maximum principle,” J. Dynam. Control Systems, 5, No. 4, 437–451 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  51. R. V. Gamkrelidze and G. L. Kharatishvili, “Extremal problems in linear topological spaces,” Izv. Akad. Nauk SSSR, Ser. Mat., 33, No. 4, 781–839 (1969).

    MathSciNet  MATH  Google Scholar 

  52. R. V. Gamkrelidze and G. L. Kharatishvili, “Extremal problems in topological spaces. 1,” Math. Syst. Theory, 1, No. 1, 229–256.

  53. I. K. Gogodze, “On optimal control of a system changing its structure on adjacent intervals of time,” Trudy ISU Akad. Nauk GSSR, No. 16, 5–9 (1977).

  54. N. Gorgodze, “Necessary conditions of optimality in neutral type optimal problems with non-fixed initial moment,” Mem. Differential Equations Math. Phys., 19, 150–153 (2000).

    MathSciNet  MATH  Google Scholar 

  55. K. Gu, “Discretized LMI set in the stability problem of a linear uncertain time-delay system,” Int. J. Control, 68, No. 4, 923–934 (1997).

    Article  MATH  Google Scholar 

  56. A. Halanay, Differential Equations: Stability, Oscillations, Time Lags, Academic Press, New York-London (1966).

    MATH  Google Scholar 

  57. A. Halanay, “Optimal controls for systems with time-lag,” SIAM J. Control, 6, 215–234 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  58. J. Hale, Theory of Functional Differential Equations [Russian translation], Nauka, Moscow (1978).

    Google Scholar 

  59. H. Halkin, “Necessary conditions of optimal control problems with differentiable or non-differentiable data,” Lecture Notes in Math., Vol. 680 (1978), pp. 77–118.

    Article  MathSciNet  Google Scholar 

  60. H. Hermes and J. P. LaSalle, Functional Analysis and Time Optimal Control, Academic Press, New York-London (1969).

    MATH  Google Scholar 

  61. M. R. Hestens, Optimization Theory: The Finite Dimensional Case, New York (1975).

  62. M. Intriligator, Mathematical Optimization and Economic Theory [Russian translation], Progress, Moscow (1973).

    Google Scholar 

  63. A. D. Ioffe and V. M. Tikhomirov, Theory of Extremal Problems [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  64. G. F. Kamenskii and E. D. Khvilton, “Necessary optimality conditions for neutral systems with deviated argument,” Avtomat. Telemekh., No. 3, 20–32 (1969).

    Google Scholar 

  65. L. V. Kantorovich and G. P. Akilov, Functional Analysis [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  66. G. L. Kharatishvili, “Maximum principle in the theory of optimal processes with delays,” Dokl. Akad. Nauk SSSR, 136, No. 1, 39–42 (1961).

    Google Scholar 

  67. G. L. Kharatishvili, Optimal Processes with Delays [in Russian], Metsniereba, Tbilisi (1966).

    Google Scholar 

  68. G. L. Kharatishvili, “A maximum principle in extremal problems with delays,” in: Mathematical Theory of Control, Academic Press, New York-London (1967), pp. 26–34.

    Google Scholar 

  69. G. L. Kharatishvili, “Maximum principle in extremal problems with delays,” Trudy TGU, 128, 149–156 (1968).

    Google Scholar 

  70. G. L. Kharatishvili, “Maximum principle in optimal systems with switchings,” Trudy ISU Akad. Nauk GSSR, 1, No. 19, 5–17 (1980).

    MathSciNet  Google Scholar 

  71. G. L. Kharatishvili, “Polyatomic optimal systems,” in: Variable-Structure Optimal Systems [in Russian], Tbilis. Univ., Tbilisi (1985).

    Google Scholar 

  72. G. L. Kharatishvili, Z. A. Machaidze, N. I. Markozashvili, and T. A. Tadumadze, Abstract Variational Theory and Its Application to Optimal Problems with Delays [in Russian], Metsniereba, Tbilisi, (1973).

    Google Scholar 

  73. G. Kharatishvili and T. Tadumadze, “Problem of optimal control for nonlinear systems with variable structure, delays and piecewise-continuous prehistory,” Mem. Differential Equations Math. Phys., 11, 67–88 (1977).

    MathSciNet  Google Scholar 

  74. G. Kharatishvili and T. Tadumadze, “Development of the theory of optimal systems with delayed arguments in Georgia,” Mem. Differential Equations Math. Phys. 12, 99–105 (1977).

    MathSciNet  Google Scholar 

  75. G. L. Kharatishvili and T. A. Tadumadze, “Nonlinear optimal systems with variable delays,” Mat. Sb., 107, No. 4, 613–633 (1978).

    MathSciNet  Google Scholar 

  76. G. L. Kharatishvili and T. A. Tadumadze, “Regular perturbations in optimal control problems with variable delays and free endpoint,” Dokl. Akad. Nauk SSSR, 314, No. 1, 151–155 (1990).

    Google Scholar 

  77. G. L. Kharatishvili and T. A. Tadumadze, “The maximum principle in optimal control problems with concentrated and distributed delays in control,” Georgian Math. J., 2, No. 6, 577–591 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  78. G. L. Kharatishvili and T. A. Tadumadze, “Nonlinear optimal control problem with variable delays, nonfixed initial instant, and piecewise-continuous prehistory,” Trudy Mat. Inst. Ross. Akad. Nauk, 220, 236–255 (1998).

    MathSciNet  Google Scholar 

  79. G. Kharatishvili and T. Tadumadze, “Mathematical modelling and optimal control of multistructural control systems with delays,” Proc. Inst. Cybern. Georgian Acad. Sci., 1, No. 1–2, 1–8.

  80. G. Kharatishvili, T. Tadumadze, and N. Gorgodze, “Continuous dependence and differentiability of solution with respect to initial data and right-hand side for differential equations with deviating argument,” Mem. Differential Equations Math. Phys., 19, 3–105 (2000).

    MathSciNet  MATH  Google Scholar 

  81. I. T. Kiguradze, “Boundary-value problems for systems of ordinary differential equations,” in: Progress in Science and Technology, Series on Contemporary Problems in Mathematics, Latest Achievements [in Russian], 30, All-Russian Institute for Scientific and Technical Information, USSR Academy of Science, Moscow (1987), pp. 3–103.

    Google Scholar 

  82. I. Kiguradze and B. Puza, “On boundary value problems for systems of linear functional-differential equations,” Czechosl. Math J., 47(122), 341–373 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  83. V. B. Kolmanovskii and V. R. Nosov, Stability and Periodic Regimes of Regulated Hereditary Systems [in Russian], Nauka, Moscow (1981).

    Google Scholar 

  84. R. Koplatadze, “On oscillatory properties of solutions of functional-differential equations,” Mem. Differential Equations Math. Phys., 3, 2–179 (1994).

    MathSciNet  Google Scholar 

  85. R. G. Koplatadze and T. A. Chanturiya, On Oscillatory Properties of Differential Equations with Deviated Argument [in Russian], Tbilis. Univ., Tbilisi (1977).

    Google Scholar 

  86. M. A. Krasnosel’skii and S. G. Krein, “On the averaging principle in nonlinear mechanics,” Usp. Mat. Nauk, 10, No. 3, 147–152 (1955).

    MathSciNet  Google Scholar 

  87. N. N. Krasovskii, Control Theory of Motion [in Russian], Nauka, Moscow (1968).

    Google Scholar 

  88. N. N. Krasovskii, “On stability of hereditary systems,” Dokl. Akad. Nauk SSSR, 119, No. 3, 435–438 (1958).

    MathSciNet  Google Scholar 

  89. J. Kurzweil and Z. Vorel, “On continuous dependence of solutions of differential equations on parameters,” Chehosl. Math. J., 7, 568–583 (1957).

    MathSciNet  Google Scholar 

  90. V. Lakshmikanthan and S. Leela, “A technique in stability theory of delay differential equations,” Nonlinear Analysis, 3, No. 3, 317–323 (1979).

    Article  MathSciNet  Google Scholar 

  91. G. Leitman, Introduction to Optimal Control Theory [Russian translation], Nauka, Moscow (1968).

    Google Scholar 

  92. E. B. Lee and L. Markus, Foundations of Optimal Control Theory [Russian translation], Nauka, Moscow (1972).

    MATH  Google Scholar 

  93. H. Logeman, “Destabilizing effects of small time delays on feedback-controlled descriptor systems,” Linear Algebra and Its Applications, 272, 131–153 (1998).

    Article  MathSciNet  Google Scholar 

  94. Z. A. Machaidze, “On the problem on the uniqueness of optimal control in systems with delays,” Soobshch. Akad. Nauk GSSR, 78, No. 2, 285–288 (1975).

    MATH  Google Scholar 

  95. Kh. F. Magerramov and K. B. Mansimov, “Optimization of a certain class of discrete control systems,” Zh. Vychisl. Mat. Mat. Fiz., 41, No. 3, 360–366 (2001).

    MathSciNet  Google Scholar 

  96. V. Maksimov and I. Pandolfi, “On a dynamical identification of controls in nonlinear time-lag systems,” IMA J. Math. Control Inform., 19, 173–184 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  97. A. Manitius, “Optimal control of hereditary systems in control theory and topics in functional analysis,” Intern. Atom. Energy Ag. Vienna, 43–178 (1976).

  98. K. B. Mansimov, Singular Controls in Systems with Delays [in Russian], ELM, Baku (1999).

    Google Scholar 

  99. G. I. Marchuk, Mathematical Models in Immunology [in Russian], Nauka, Moscow (1980).

    MATH  Google Scholar 

  100. M. D. Mardanov, Certain Problems of the Mathematical Theory of Optimal Processes with Delay [in Russian], Azerb. Univ., Baku (1987).

    Google Scholar 

  101. N. I. Markozashvili, “Necessary optimality conditions for prehistory control systems,” In: Certain Problems of Mathematical Theory of Optimal Control [in Russian], Tbilis. Univ., Tbilisi (1975), pp. 151–180.

    Google Scholar 

  102. A. S. Matveev, “Optimal control problems with delays of general form and state constraints,” Izv. Akad. Nauk SSSR, Ser. Mat., 52, No. 6, 1200–1229 (1988).

    Google Scholar 

  103. V. A. Medvedev and V. N. Rozova, “Optimal control of step-like systems,” Avtomat. Telemekh., No. 3, 15–23 (1972).

  104. T. K. Melikov, Singular Controls in Hereditary Systems [in Russian], ELM, Baku (2002).

    Google Scholar 

  105. Yu. A. Mitropol’skii and D. I. Martynyuk, Lectures on Oscillation Theory of Systems with Delay [in Russian], Inst. Mat., Akad. Nauk USSR, Kiev (1969).

    Google Scholar 

  106. B. Sh. Mordukhovich, Approximation Methods in Optimization and Control Problems [in Russian], Nauka, Moscow (1988).

    MATH  Google Scholar 

  107. J. Murray, Lectures on Nonlinear Differential Equation Models in Biology [Russian translation], Mir, Moscow (1983).

    MATH  Google Scholar 

  108. A. D. Myshkis, Linear Differential Equations with Retarded Argument [in Russian], Nauka, Moscow (1972).

    MATH  Google Scholar 

  109. L. W. Neustadt, Optimization: A Theory of Necessary Conditions, Princeton Univ. Press, Princeton, New York (1976).

    MATH  Google Scholar 

  110. M. S. Nikol’skii and A. Akhmadaliev, “A certain linear terminal control problem of composite systems,” Vestn. MGU, Ser. Vychisl. Mat. Kibern., No. 1, 71–77 (1984).

  111. S. I. Nuculescu, “Delay effects on stability,” Lecture Notes in Control and Inform. Sci., Vol. 269, Springer (2001).

  112. N. M. Ogustoreli, Time-Delay Control Systems, Academic Press, New York-London (1966).

    Google Scholar 

  113. A. W. Olbrot, “Control of retarded systems with function space constraints, II,” Control Cybern., 6, No. 2, 17–69 (1977).

    MathSciNet  MATH  Google Scholar 

  114. C. Olech, “Existence theorems for optimal problems with vector valued cost function,” Trans. Amer. Math. Soc., 136, 159–180 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  115. C. Olech, “Existence theory in optimal control problems,” in: Control Theory and Topics in Funct. Anal., Vol. 1, Vienna (1976), pp. 291–328.

    MathSciNet  Google Scholar 

  116. N. N. Petrov, “Certain sufficient conditions of continuous dependence of a solution of a differential equation on a parameter,” Vestn. LGU, No. 19, 26–40 (1962).

    Google Scholar 

  117. N. N. Petrov, “On continuous dependence of solutions of differential equations on a parameter,” Vestn. LGU, No. 7, 29–36 (1964).

    Google Scholar 

  118. L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, Mathematical Theory of Optimal Processes [in Russian], Nauka, Moscow (1961).

    Google Scholar 

  119. D. Przeworska-Rolevicz, Equations with Transformed Argument, An Algebric Approach, PWN-Polish Sci. Publ., Warszawa (1973).

    Google Scholar 

  120. B. N. Pshenichnyi, Convex Analysis and Extremal Problems [in Russian], Nauka, Moscow (1980).

    Google Scholar 

  121. I. Ramishvili, “The linearized maximum principle for quasi-linear neutral optimal problems with discontinuous initial conditions and variable delays in control,” Mem. Differential Equations Math. Phys., 31, 145–148 (2004).

    MathSciNet  MATH  Google Scholar 

  122. I. Ramishvili and T. Tadumadze, “Formulas of variation for a solution of neutral differential equations with continuous initial condition,” Georgian Math. J., 11, No. 1, 155–175 (2004).

    MathSciNet  MATH  Google Scholar 

  123. B. S. Razumikhin, “Application of the Lyapunov method to stability problems of systems with delays,” Avtomat. Telemekh., 21, No. 6, 740–748 (1960).

    Google Scholar 

  124. A. Robertson and V. Robertson, Topological Vector Spaces [Russian translation], Mir, Moscow (1967).

    MATH  Google Scholar 

  125. L. I. Rozonoer, “L. S. Pontryagin maximum principle in the optimal system theory,” Avtomat. Telemekh., 20, No. 12, 1561–1578 (1959).

    MathSciNet  Google Scholar 

  126. V. P. Rubanik, Oscillations of Quasilinear Systems with Delays [in Russian], Nauka, Moscow (1969).

    Google Scholar 

  127. M. E. Salukvadze, Vector Optimization Problems in Control Theory [in Russian], Metsniereba, Tbilisi (1975).

    MATH  Google Scholar 

  128. L. Schwartz, Analysis [Russian translation], Vol. 1, Mir, Moscow (1972).

    MATH  Google Scholar 

  129. T. A. Tadumadze, “Maximum principle for certain control systems of neutral type,” Seminar Inst. Prikl. Mat., 9, 9–13 (1974).

    MathSciNet  Google Scholar 

  130. T. A. Tadumadze, “On the existence of a solution in optimal problems with deviated argument,” Soobshch. Akad. Nauk GSSR, 89, No. 2, 313–316 (1978).

    MathSciNet  MATH  Google Scholar 

  131. T. A. Tadumadze, Certain Problems of Qualitative Optimal Control Theory [in Russian], Tbilis. Univ., Tbilisi (1983).

    Google Scholar 

  132. T. A. Tadumadze, “On the existence of a solution in optimal problems described by nonlinear differential-functional equations,” Differents. Uravn., 20, No. 4, 597–604 (1984).

    MathSciNet  MATH  Google Scholar 

  133. T. Tadumadze, “Existence theorems for solution of optimal problems with variable delays,” Control Cybern., 10, No. 3–4, 125–134 (1984).

    MathSciNet  Google Scholar 

  134. T. Tadumadze, “The maximum principle and existence theorems in the optimal problems with delay and non-fixed initial function,” Seminar of I. Vekua Inst. Appl. Math., Reports, 22, 102–107 (1993).

    MathSciNet  Google Scholar 

  135. T. Tadumadze, “On a new necessary condition of optimality of the initial moment in control problems with delay,” Mem. Differential Equations Math. Phys., 17, 157–159 (1999).

    MathSciNet  MATH  Google Scholar 

  136. T. Tadumadze, “Local representation for the variation of solution of delay differential equations,” Mem. Differential Equations Math. Phys., 21, 138–141 (2000).

    MATH  Google Scholar 

  137. T. Tadumadze, “Necessary conditions of optimality for an optimal problem with variable delays and with a continuous initial condition,” Mem. Differential Equations Math. Phys., 24, 136–139 (2001).

    MathSciNet  MATH  Google Scholar 

  138. T. Tadumadze and L. Alkhazishvili, “Necessary conditions of optimality for optimal problems with delays and a discontinuous initial condition,” Mem. Differential Equations Math. Phys., 22, 154–158 (2001).

    MathSciNet  MATH  Google Scholar 

  139. T. Tadumadze and L. Alkhazishvili, “Formulas of variation of solution for non-linear controlled delay differential equations with discontinuous initial condition,” Mem. Differential Equations Math. Phys., 29, 125–150 (2003).

    MathSciNet  MATH  Google Scholar 

  140. T. Tadumadze and L. Alkhazishvili, “Formulas of variation of solution for non-linear controlled delay differential equations with continuous initial condition,” Mem. Differential Equations Math. Phys., 31, 83–97 (2004).

    MathSciNet  MATH  Google Scholar 

  141. T. A. Tadumadze and N. M. Avalishvili, “Regular perturbations in variable-structure optimal systems,” In: Variable-Structure Optimal Systems [in Russian], Tbilis. Univ., Tbilisi (1985), pp. 100–154.

    Google Scholar 

  142. T. Tadumadze and K. Gelashvili, “An existence theorem for a class of optimal problems with delayed argument,” Mem. Differential Equations Math. Phys., 20, 136–140 (2000).

    MathSciNet  MATH  Google Scholar 

  143. A. M. Ter-Krikorov, Optimal Control and Mathematical Economics [in Russian], Nauka, Moscow (1977).

    MATH  Google Scholar 

  144. Z. Tsintsadze, “The Lagrange principle of taking restrictions off and its application to linear optimal control problems in the presence of mixed restrictions and delays,” Mem. Differential Equations Math. Phys., 11, 105–128 (1997).

    MathSciNet  MATH  Google Scholar 

  145. K. Sh. Tsiskaridze, “Extremal problems in Banach spaces,” in: Certain Problems of the Mathematical Theory of Optimal Control [in Russian], Tbilis. Univ., Tbilisi (1975), pp. 3–150.

    Google Scholar 

  146. V. P. Vasil’ev, Numerical Methods for Solution of Extremal Problems [in Russian], Nauka, Moscow (1988).

    Google Scholar 

  147. V. V. Velichenko, “Optimal control of composite systems,” Dokl. Akad. Nauk SSSR, 176, No. 4, 754–756 (1967).

    MathSciNet  Google Scholar 

  148. J. Warga, Optimal Control of Differential and Functional Equations [Russian translation], Nauka, Moscow (1977).

    Google Scholar 

  149. V. A. Yakubovich, “On the abstract theory of optimal control,” Sib. Mat. Zh., 18, No. 3, 685–707 (1977).

    MathSciNet  MATH  Google Scholar 

  150. V. A. Yang, Lectures on the Calculus of Variations and Optimal Control Theory [in Russian], Mir, Moscow (1974).

    Google Scholar 

  151. R. T. Yanushevskii, Control of Objects with Delays [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  152. J. A. Yorke, “Selected topics in differential-delay equations,” Lecture Notes in Math., Vol. 243, Springer-Verlag, Berlin-New York (1971).

    Google Scholar 

  153. L. Yu, “Stability robustness analysis of linear systems with delayed perturbation,” J. Franklin Inst., 336, 755–765 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  154. G. K. Zakharov, “Optimization of step-like control systems,” Avtomat. Telemekh., No. 8, 5–9 (1981).

  155. M. I. Zelikin and V. F. Borisov, “Singular optimal regimes in problems of mathematical economics,” In: Progress in Science and Technology, Series on Contemporary Mathematics and Its Applications, Optimal Control [in Russian], 11, All-Russian Institute for Scientific and Technical Information, Russian Academy of Science, Moscow (2003), pp. 3–161.

    Google Scholar 

  156. V. I. Zhukovskii and N. T. Tynyanskii, Equilibrium Controls in Multicriteria Dynamical Systems [in Russian], MGU, Moscow (1984).

    Google Scholar 

  157. S. V. Zubov and N. V. Zubov, Mathematical Methods for Stabilization of Dynamical Systems [in Russian], St. Petersburg Univ., St. Petersburg (1996).

    MATH  Google Scholar 

  158. A. M. Zverkin, G. A. Kamenskii, S. B. Norkin, and L. Z. El’sgolts, “Differential equations with deviated argument, 1,” Usp. Mat. Nauk, 17, No. 2, 77–164 (1962).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Sovremennaya Matematika i Ee Prilozheniya (Contemporary Mathematics and Its Applications), Vol. 25, Optimal Control, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kharatishvili, G.L., Tadumadze, T.A. Variation formulas of solutions and optimal control problems for differential equations with retarded argument. J Math Sci 140, 1–175 (2007). https://doi.org/10.1007/s10958-007-0412-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-007-0412-y

Keywords

Navigation