Skip to main content

On arithmetic properties of values of theta-constants


This article describes results about the transcendence and algebraic independence of values of theta constants (Nullthetawerte) and direct methods for proving these results. Values of other functions related to theta constants are discussed. We also present some conjectures and open questions.

This is a preview of subscription content, access via your institution.


  1. 1.

    N. I. Ahiezer, Elements of the Theory of Elliptic Functions, Translations of Mathematical Monographs, Vol. 79, American Mathematical Society, Providence (1990).

    Google Scholar 

  2. 2.

    Y. Andre, Quelques Conjectures de Transcendance Issues de la Géométrie Algébrique, preprint de l’Inst. Math. de Jussieu, No. 121 (1997).

  3. 3.

    K. Barré-Sirieix, G. Diaz, F. Gramain, and G. Philibert, “Une preuve de la conjecture de Mahler-Manin,” Invent. Math., 124, 1–9 (1996).

    MATH  Article  MathSciNet  Google Scholar 

  4. 4.

    D. Bertrand, “Theta functions and transcendence,” Ramanujan J., 1, No. 4, 339–350 (1997).

    MATH  Article  MathSciNet  Google Scholar 

  5. 5.

    W. D. Brownawell and D. W. Masser, “Multiplicity estimates for analytic functions. I,” J. Reine Angew. Math., 313, 200–216 (1980).

    MathSciNet  Google Scholar 

  6. 6.

    G. Chudnovsky, Contributions to the Theory of Transcendental Numbers, AMS, Providence (1984).

    MATH  Google Scholar 

  7. 7.

    P. Cohen, “On the coefficients of the transformation polynomials for the elliptic modular function,” Math. Proc. Cambridge Philos. Soc., 95, 389–402 (1984).

    MATH  MathSciNet  Google Scholar 

  8. 8.

    N. I. Feldman, Hilbert’s Seventh Problem [in Russian], Izd. Mosk. Univ., Moscow (1982).

    Google Scholar 

  9. 9.

    A. O. Gelfond, Transcendental and Algebraic Numbers, Dover (1960).

  10. 10.

    G. Halphen, “Sur une systéme d’equations différentielles,” C. R. Acad. Sci. Paris, 92, 1101–1103 (1881).

    Google Scholar 

  11. 11.

    S. Lang, Algebra, Addison-Wesley, Reading (1965).

    MATH  Google Scholar 

  12. 12.

    S. Lang, Elliptic Functions, Addison-Wesley, Reading (1973).

    MATH  Google Scholar 

  13. 13.

    D. F. Lawden, Elliptic Functions and Applications, Springer, Berlin (1989).

    MATH  Google Scholar 

  14. 14.

    K. Mahler, “On algebraic differential equations satisfied by automorphic functions,” J. Austral. Math. Soc., 10, 445–450 (1969).

    MATH  MathSciNet  Article  Google Scholar 

  15. 15.

    K. Mahler, “Remarks on a paper by W. Schwarz,” J. Number Theory, 1, 512–521 (1969).

    MATH  Article  MathSciNet  Google Scholar 

  16. 16.

    K. Mahler, Lectures on Transcendental Numbers, Lect. Notes Math., Vol. 546, Springer, Berlin (1976).

    Google Scholar 

  17. 17.

    K. Mahler and J. Popken, “Ein neues Prinzip für Transzendenzbeweize,” Proc. Akad. Amsterdam, 38, 864–871 (1935).

    MATH  Google Scholar 

  18. 18.

    Yu. I. Manin, “Cyclotomic fields and modular curves,” Russian Math. Surveys, 26, No. 6, 7–78 (1971).

    MATH  Article  MathSciNet  Google Scholar 

  19. 19.

    Yu. V. Nesterenko, “Multiplicity estimates for theta-constants,” Fund. Prikl. Mat., 5, No. 2, 557–562 (1999).

    MATH  MathSciNet  Google Scholar 

  20. 20.

    A. B. Schidlovskii, Transcendental Numbers, Walter de Gruyter, Berlin (1989).

    Google Scholar 

  21. 21.

    Th. Schneider, “Arithmetische Untersuchungen elliptischer Integrale,” Math. Ann., 113, 1–13 (1937).

    Article  MathSciNet  Google Scholar 

  22. 22.

    Th. Schneider, “Zur Theorie der Abelschen Functionen und Integrale,” J. Reine Angew. Math., 183, 110–128 (1941).

    MATH  MathSciNet  Google Scholar 

  23. 23.

    Th. Schneider, Einführung in die Transzendenten Zahlen, Springer, Berlin (1957).

    MATH  Google Scholar 

  24. 24.

    P. K. Suetin, Classical Orthogonal Polynomials [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  25. 25.

    E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Vol. 2, Cambridge (1927).

Download references

Author information



Corresponding author

Correspondence to Yu. V. Nesterenko.

Additional information


Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 11, No. 6, pp. 95–122, 2005.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nesterenko, Y.V. On arithmetic properties of values of theta-constants. J Math Sci 146, 5697–5716 (2007).

Download citation


  • Elliptic Function
  • Theta Function
  • Homogeneous Polynomial
  • Algebraic Number
  • Modular Function