Skip to main content

On the weakened Siegel’s conjecture


In the paper, we prove that two definitions of E-functions present in mathematics are equivalent if E-functions satisfy second-order linear differential equations. For this set of functions, a weakened variant of the well-known Siegel conjecture about representability of any E-function by a polynomial of hypergeometric functions is also proved.

This is a preview of subscription content, access via your institution.


  1. 1.

    Y. Andre, “Séries Gevrey de type arithmétique,” Ann. Math., 151, 705–756 (2000).

    MATH  Article  MathSciNet  Google Scholar 

  2. 2.

    V. A. Ditkin and A. P. Prudnikov, Integral Transformations and Operating Calculus [in Russian], Fizmatgiz, Moscow (1961).

    Google Scholar 

  3. 3.

    A. I. Galochkin, “A criterion for the membership of hypergeometric Siegel functions to the class of E-functions,” Mat. Zametki, 29, No. 1, 3–14 (1981).

    MATH  MathSciNet  Google Scholar 

  4. 4.

    V. V. Golubev, Lectures on Analytical Theory of Differential Equations [in Russian], Gostechizdat, Moscow-Leningrad (1950).

    Google Scholar 

  5. 5.

    V. A. Gorelov, “Algebraic independence of the values of E-functions at singular points and Siegel’s conjecture,” Mat. Zametki, 67, No. 2, 174–190 (2000).

    MathSciNet  Google Scholar 

  6. 6.

    V. A. Gorelov, “On the Siegel conjecture for second-order homogeneous linear differential equations,” Mat. Zametki, 75, No. 4, 549–565 (2004).

    MathSciNet  Google Scholar 

  7. 7.

    V. A. Gorelov, “On the structure of the set of E-functions satisfying second-order linear differential equations,” Mat. Zametki, 78, No. 3, 331–348 (2005).

    MathSciNet  Google Scholar 

  8. 8.

    Y. L. Luke, Mathematical Functions and Their Approximations, Academic Press, New York (1975).

    MATH  Google Scholar 

  9. 9.

    A. B. Shidlovskii, Transcendental Numbers [in Russian], Nauka, Moscow (1987).

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to V. A. Gorelov.

Additional information


Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 11, No. 6, pp. 33–39, 2005.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gorelov, V.A. On the weakened Siegel’s conjecture. J Math Sci 146, 5649–5654 (2007).

Download citation


  • Hypergeometric Function
  • Linear Differential Equation
  • Homogeneous Equation
  • Algebraic Number
  • Laplace Transformation