Skip to main content
Log in

Pure mathematics and physical reality (continuity and computability)

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

Drawing upon the intuitive distinction between real and imaginary mathematical objects (i.e., those that have an actual or potential physical interpretation and those that do not), we propose a mathematical definition of these concepts. Our definition of the class of real objects is based on a certain universal continuous function. We also discuss the class of computable reals, functions, functionals, operators, etc., and we argue that it is too narrow to encompass the class of real objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Kan, “Open sets of diffeomorphisms having two attractors, each with an everywhere dense basin,” Bull. Amer. Math. Soc., 31, 68–74 (1994).

    MATH  MathSciNet  Google Scholar 

  2. A. Kanamori, The Higher Infinite, Springer (1994).

  3. K. Kuratowski, Topology, Academic Press, 1966–68.

  4. J. Mycielski, “Can mathematics explain natural intelligence?” Physica D, 22, 366–375 (1986).

    MATH  MathSciNet  Google Scholar 

  5. J. Mycielski, “A learning theorem for linear operators,” Proc. Amer. Math. Soc., 103, 547–550 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  6. J. Mycielski, “Games with perfect information,” in: R. J. Aumann and S. Hart, eds., Handbook of Game Theory, Vol. I, North-Holland (1992), pp. 41–70.

  7. J. Mycielski, “On the tension between Tarski’s nominalism and his model theory (definitions for a mathematical model of knowledge),” Ann. Pure Appl. Logic, 126, Special Issue: Proc. Alfred Tarski’s Centenary Conference, Warsaw 2001, 215–224 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  8. J. Mycielski, “Russell’s paradox and Hilbert’s (much forgotten) view of set theory,” in: G. Link, ed., One Hundred Years of Russell’s Paradox, Walter de Gruyter, Berlin (2004), pp. 533–547.

    Google Scholar 

  9. J. Mycielski and S. Swierczkowski, “A model of the neocortex,” Adv. Appl. Math., 9, 465–480 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  10. I. Neeman, “Optimal proofs of determinacy,” Bull. Symbolic Logic, 1, 327–339 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  11. I. Neeman, “Optimal proofs of determinacy. II,” J. Math. Logic, 2, 227–258 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  12. M. B. Pour-El, “The structure of computability in analysis and physical theory: An extension of Church’s thesis,” in: E. R. Griff, ed., Handbook of Computability Theory, Elsevier Science, Amsterdam (1999), pp. 449–471.

    Chapter  Google Scholar 

  13. M. B. Pour-El and J. I. Richards, Computability in Analysis and Physics, Springer (1989).

  14. S. B. Volchan, “What is a random sequence?” Amer. Math. Monthly, 109, 46–63 (2002).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 11, No. 5, pp. 151–168, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mycielski, J. Pure mathematics and physical reality (continuity and computability). J Math Sci 146, 5552–5563 (2007). https://doi.org/10.1007/s10958-007-0368-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-007-0368-y

Keywords

Navigation