Skip to main content

The genus of G-spaces and topological lower bounds for chromatic numbers of hypergraphs

Abstract

Lower bounds for chromatic numbers of hypergraphs via the genus and cohomological index of special complexes (Hom-and JHom-complexes) are given.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    S. A. Bogatyi, “Ryshkov obstruction,” Proc. Steklov Inst. Math., 239, 55–73 (2002).

    MathSciNet  Google Scholar 

  2. 2.

    I. Bárány, S. B. Shlosman, and A. Szücs, “On a topological generalization of a theorem of Tverberg,” J. London Math. Soc., 23, 158–164 (1981).

    MATH  Article  MathSciNet  Google Scholar 

  3. 3.

    M. Clapp and D. Puppe, “Critical point theory with symmetries,” J. Reine Angew. Math., 418, 1–29 (1991).

    MATH  MathSciNet  Google Scholar 

  4. 4.

    P. E. Conner and E. E. Floyd, “Fixed point free involutions and equivariant maps,” Bull. Amer. Math. Soc., 66, 416–441 (1960).

    MATH  Article  MathSciNet  Google Scholar 

  5. 5.

    E. Fadell and S. Husseini, “An ideal-valued cohomological index theory with applications to Borsuk-Ulam and Bourgin-Yang theorems,” Ergodic Theory Dynam. Systems, 8, Spec. Issue, 259–268 (1988).

    Google Scholar 

  6. 6.

    I. Křiž, “Equivariant cohomology and lower bounds for chromatic numbers,” Trans. Amer. Math. Soc., 333, No. 3, 567–577 (1992).

    MATH  MathSciNet  Google Scholar 

  7. 7.

    C. Lange, On Generalised Kneser Colourings, arXiv:math.CO/0312067 (2003).

  8. 8.

    L. Lovász, “Kneser’s conjecture, chromatic number and homotopy,” J. Combin. Theory Ser. A, 25, 319–324 (1978).

    MATH  Article  MathSciNet  Google Scholar 

  9. 9.

    J. Matousek, Using the Borsuk-Ulam Theorem. Lectures on Topological Methods in Combinatorics and Geometry, Springer, Berlin (2003).

    MATH  Google Scholar 

  10. 10.

    M. Özadyn, Equivariant Maps for the Symmetric Group, preprint, Univ. of Wisconsin-Madison (1987).

  11. 11.

    K. S. Sarkaria, “A generalized Kneser conjecture,” J. Combin. Theory Ser. B, 49, 236–240 (1990).

    MATH  Article  MathSciNet  Google Scholar 

  12. 12.

    K. S. Sarkaria, “A generalized van Kampen-Flores theorem,” Proc. Amer. Math. Soc., 111, No. 2, 559–565 (1991).

    MATH  Article  MathSciNet  Google Scholar 

  13. 13.

    A. Schwarz, “The genus of a fiber space,” Amer. Math. Soc. Transl., 55, 49–140 (1966).

    Google Scholar 

  14. 14.

    A. Yu. Volovikov, “On the van Kampen-Flores theorem,” Mat. Zametki, 59, No. 5, 663–670 (1996).

    MathSciNet  Google Scholar 

  15. 15.

    A. Yu. Volovikov, “On the index of G-spaces,” Mat. Sb., 191, No. 9, 3–22 (2000).

    MathSciNet  Google Scholar 

  16. 16.

    A. Yu. Volovikov, “Genus of G-spaces and a lower bound for the chromatic number of a hypergraph, ” in: Proc. Int. Sem. on Discrete Mathematics and Applications. Abstract of Reports [in Russian], Moscow State University, Moscow (2004), pp. 384–387.

    Google Scholar 

  17. 17.

    A. Yu. Volovikov, “Coincidence points of maps from ℤ p k-spaces,” Izv. Ross. Akad. Nauk, Ser. Mat., 69, No. 5, 53–106 (2005).

    MathSciNet  Google Scholar 

  18. 18.

    C. T. Yang, “On theorems of Borsuk-Ulam, Kakutani-Yamabe-Yujobô and Dyson, I,” Ann. Math., 60, 262–282 (1954).

    Article  Google Scholar 

  19. 19.

    C. T. Yang, “On theorems of Borsuk-Ulam, Kakutani-Yamabe-Yujobô and Dyson, II,” Ann. Math., 62, No. 2, 271–283 (1955).

    Article  Google Scholar 

  20. 20.

    R. T. Zivaljević, “User’s guide to equivariant methods in combinatorics,” Publ. Inst. Math., Belgrade, 59(73), 114–130 (1996).

    Google Scholar 

  21. 21.

    R. T. Zivaljević, “User’s guide to equivariant methods in combinatorics, II,” Publ. Inst. Math. Nouv. Sér., 64(78), 107–132 (1998).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Additional information

__________

Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 11, No. 4, pp. 33–48, 2005.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Volovikov, A.Y. The genus of G-spaces and topological lower bounds for chromatic numbers of hypergraphs. J Math Sci 144, 4387–4397 (2007). https://doi.org/10.1007/s10958-007-0276-1

Download citation

Keywords

  • Simplicial Complex
  • Chromatic Number
  • Prime Power
  • Free Action
  • Closed Invariant Subspace