Skip to main content

On presentations of generalizations of braids with few generators

Abstract

In his initial paper on braids, E. Artin gave a presentation with two generators for an arbitrary braid group. We give analogs of Artin’s presentation for various generalizations of braids.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    E. Artin, “Theorie der Zöpfe,” Abh. Math. Sem. Univ. Hamburg, 4, 47–72 (1925).

    Article  MATH  Google Scholar 

  2. 2.

    J. C. Baez, “Link invariants of finite type and perturbation theory,” Lett. Math. Phys., 26, No. 1, 43–51 (1992).

    MATH  Article  MathSciNet  Google Scholar 

  3. 3.

    D. Bessis and J. Michel, Explicit Presentations for Exceptional Braid Groups, arXiv:math.GR/0312191 (2003).

  4. 4.

    J. S. Birman, “New points of view in knot theory,” Bull. Amer. Math. Soc., 28, No. 2, 253–387 (1993).

    MATH  MathSciNet  Google Scholar 

  5. 5.

    J. S. Birman, K. H. Ko, and S. J. Lee, “A new approach to the word and conjugacy problems in the braid groups,” Adv. Math., 139, No. 2, 322–353 (1998).

    MATH  Article  MathSciNet  Google Scholar 

  6. 6.

    E. Brieskorn, “Sur les groupes de tresses [d’après V. I. Arnol’d],” in: Séminaire Bourbaki, 24ème année (1971/1972), Exp. No. 401, Springer, Berlin (1973), pp. 21–44, Lect. Notes Math., Vol. 317.

    Google Scholar 

  7. 7.

    M. Broué, G. Malle, and R. Rouquier, “Complex reflection groups, braid groups, Hecke algebras,” J. Reine Angew. Math., 500, 127–190 (1998).

    MATH  MathSciNet  Google Scholar 

  8. 8.

    H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, Springer, Berlin (1972), Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 14.

    Google Scholar 

  9. 9.

    P. Deligne, “Les immeubles des groupes de tresses généralisés,” Invent. Math., 17, 273–302 (1972).

    MATH  Article  MathSciNet  Google Scholar 

  10. 10.

    E. Fadell and J. Van Buskirk, “The braid groups of E 2 and S 2,” Duke Math. J., 29, 243–257 (1962).

    MATH  Article  MathSciNet  Google Scholar 

  11. 11.

    R. Fenn, R. Rimányi, and C. Rourke, “The braid-permutation group,” Topology, 36, No. 1, 123–135 (1997).

    MATH  Article  MathSciNet  Google Scholar 

  12. 12.

    V. Sergiescu, “Graphes planaires et présentations des groupes de tresses,” Math. Z., 214, 477–490 (1993).

    MATH  Article  MathSciNet  Google Scholar 

  13. 13.

    G. C. Shephard and J. A. Todd, “Finite unitary reflection groups,” Can. J. Math., 6, 274–304 (1954).

    MATH  MathSciNet  Google Scholar 

  14. 14.

    V. V. Vershinin, “Braid groups and loop spaces,” Russ. Math. Surv., 54, No. 2, 273–350 (1999).

    MATH  Article  MathSciNet  Google Scholar 

  15. 15.

    V. V. Vershinin, On the Singular Braid Monoid, arXiv:math.GR/0309339 (2003).

  16. 16.

    O. Zariski, “On the Poincaré group of rational plane curves,” Amer. J. Math., 58, 607–619 (1936).

    MATH  Article  MathSciNet  Google Scholar 

Download references

Author information

Affiliations

Authors

Additional information

__________

Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 11, No. 4, pp. 23–32, 2005.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vershinin, V.V. On presentations of generalizations of braids with few generators. J Math Sci 144, 4380–4386 (2007). https://doi.org/10.1007/s10958-007-0275-2

Download citation

Keywords

  • Braid Group
  • Coxeter Group
  • Artin Group
  • Canonical Generator
  • Braid Relation