Skip to main content
Log in

Spectral methods for studying degenerate differential-operator equations. I

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

A review of the results on degenerate differential-operator equations mainly obtained by Khar’kov and Donetsk mathematicians starting from the 1970s is presented. Applications to evolutionary problems of electrodynamics and mathematical circuit theory, including the construction of models of the corresponding physical systems, are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Benadbdallakh, A. G. Rutkas, and A. A. Solov’ev, “Application of asymptotic expansions to studying the infinite system Ax n+1 + Bx n = f n in a Banach space,” Teor. Funkts. Funkts. Anal. Prilozh. (Khar’kov), 12, 20–35 (1970).

    Google Scholar 

  2. M. Benabdallakh and A. G. Rutkas, “Normal solutions of the system Ax n+1 + Bx n = f n in a Banach space,” Vestn. Khar’kov. Univ., 254, 62–65 (1984).

    MathSciNet  Google Scholar 

  3. M. Benabdallakh, A. G. Rutkas, and A. A. Solov’ev, “On the stability of degenerate difference systems in Banach spaces,” Dinam. Sistemy, Kiev, Simferopol’, 6, 103–109 (1987).

    Google Scholar 

  4. M. F. Bondarenko, L. A. Vlasenko, and A. G. Rutkas, “Periodic solutions of a certain class of implicit difference equations,” Dokl. Nats. Akad. Nauk Ukrainy, 1, 9–14 (1999).

    MathSciNet  Google Scholar 

  5. M. F. Bondarenko and A. G. Rutkas, “Determinancy tests of implicit discrete nonautonomous systems,” Dokl. Nats. Akad. Nauk Ukrainy, 2, 7–11 (2001).

    MathSciNet  Google Scholar 

  6. S. L. Campbell, “Singular systems of differential equations,” Res. Notes Math., 40, Pitman Publishing, New York (1980)

    Google Scholar 

  7. S. L. Campbell, “Singular systems of differential equations, II,” Res. Notes Math., 61, Pitman Publishing, New York (1981).

    Google Scholar 

  8. A. Favini, “Laplace transform method for a class of degenerate evolution problems,” Rend. Math., 12, Nos. 3–4, 511–536 (1979).

    MATH  MathSciNet  Google Scholar 

  9. A. Favini, “Abstract potential operators and spectral methods for a class of degenerate evolution problems,” J. Differ. Equations, 39, No. 2, 212–225 (1981).

    Article  MATH  MathSciNet  Google Scholar 

  10. A. Favini, “Degenerate and singular evolution equations in Banach spaces,” J. Math. Ann., 273, 17–44 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  11. A. Favini and P. Plazzi, “Some results concerning the abstract nonlinear equation D t Mu(t)+Lu(t) = f(t, Ku(t)),” Circuits Systems Signal Processing, 5, 261–274 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  12. A. Favini and P. Plazzi, “On some abstract degenerate problems of parabolic type. II. The nonlinear case,” Nonlin. Anal. Theory Meth. Appl., 13, 23–31 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  13. A. Favini and A. Rutkas, “Existence and uniqueness of solution of some abstract degenerate nonlinear equations,” Differ. Integr. Equations, 12, No. 3, 373–394 (1999).

    MATH  MathSciNet  Google Scholar 

  14. A. Favini and L. Vlasenko, “On solvability of degenerate nonstationary differential-difference equations in Banach spaces,” Differ. Integr. Equations, 14 (2001).

  15. I. Ts. Gokhberg and M. G. Krein, Introduction to the Theory of Self-Adjoint Operators [in Russian], Nauka, Moscow (1965).

    Google Scholar 

  16. R. Kalman, M. Arbib, and P. Falb, Topics in Mathematical System Theory [Russian translation], Mir, Moscow (1971).

    MATH  Google Scholar 

  17. M. V. Keldysh, “On eigenvalues and eigenfunctions of certain classes of non-self-adjoint equations,” Dokl. Akad. Nauk SSSR, 77, No. 1, 11–14 (1951).

    MATH  Google Scholar 

  18. S. G. Krein, Linear Differential Equations in a Banach Space [in Russian], Nauka, Moscow (1967).

    Google Scholar 

  19. M. S. Lefshits, Operators, Oscillations, and Waves (Open Systems) [in Russian], Nauka, Moscow (1966).

    Google Scholar 

  20. A. L. Liven’, “Solvability of the Cauchy problem and estimators for the initial manifold for a certain implicit operator-differential equation,” Vestn. Khar’kov Univ, Ser. Mat., Prikl. Mat., Mekh., 458, 101–108 (1999).

    Google Scholar 

  21. Yu. I. Lyubich, “Classical and local Laplace transform in the abstract Cauchy problem,” Usp. Mat. Nauk, 21, No. 3, 3–51 (1966).

    MATH  Google Scholar 

  22. N. I. Radbel’, “On the initial manifold and dissipativity of the Cauchy problem for the equation Ax′(t) + Bx(t) = 0,” Differ. Uravn., 15, No. 6, 1142–1143 (1979).

    Google Scholar 

  23. A. G. Rutkas, “Non-self-adjoint operators in the theory of multipole networks.” Vestn. Khar’kov. Univ., 32, 154–180 (1966).

    Google Scholar 

  24. A. G. Rutkas, “Applications of non-self-adjoint operators to a certain class of electric circuits,” Radiotekhn., 4, 139–150 (1967).

    Google Scholar 

  25. A. G. Rutkas, “Pairs of non-self-adjoint operators and operator hypernodes,” Ukr. Mat. Zh., 1, 37–52 (1970).

    MathSciNet  Google Scholar 

  26. A. G. Rutkas, “Cauchy problem for the equation Ax′(t) + Bx(t) = f(t),” Differ. Uravn., 11, No. 11, 1996–2010 (1975).

    MATH  MathSciNet  Google Scholar 

  27. A. G. Rutkas, “Properties of the distance functions and propagation of waves in structures with a given geometry,” Dokl. Akad. Nauk SSSR, 230, No. 1, 38–40 (1976).

    MathSciNet  Google Scholar 

  28. A. G. Rutkas, “On the theory of characteristic functions of linear operators,” Dokl. Akad. Nauk SSSR, 229, No. 3, 546–549 (1976).

    MathSciNet  Google Scholar 

  29. A. G. Rutkas, “Characteristic function and model of a linear operator pencil,” Teor. Funkts. Funkts. Anal Prilozh. (Khar’kov), 45, 98–111 (1986).

    MATH  Google Scholar 

  30. A. G. Rutkas, “Modal fields in a wave guide with layered dispersive medium,” Preprint, No. 360, Akad. Nauk USSR, Khar’kov (1987).

    Google Scholar 

  31. A. G. Rutkas, “On classification and properties of solutions of the equation Ax′ + Bx = f(t),” Differ. Uravn., 25, No. 7, 1150–1155 (1989).

    MATH  MathSciNet  Google Scholar 

  32. A. G. Rutkas, “Perturbations of skew-Hermitian pencils and the Cauchy problem,” Ukr. Mat. Zh., 41, No. 8, 1082–1088 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  33. A. Rutkas, “The solvability of a nonlinear differential equation in a Banach space. Spectral and evolutional problems,” Proc. 6th Crimean Math. School-Symposium, Simferopol (1996), pp. 317–320.

  34. A. G. Rutkas and D. M. Chausovskii, “Some applications of operator nodes and hypernodes,” Mat. Fizika (Kiev), 5, 173–178 (1968).

    Google Scholar 

  35. A. G. Rutkas and N. I. Khirgii, “Semigroups of monomorphisms of graphs in discrete structures,” Teor. Funkts. Funkts. Anal. Prilozh. (Khar’kov), 19, 111–125 (1974).

    MATH  Google Scholar 

  36. A. G. Rutkas and N. I. Radbel’, “On linear operator pencils and noncanonical systems,” Teor. Funkts. Funkts. Anal. Prilozh. (Khar’kov), 17, 3–14 (1973).

    MATH  MathSciNet  Google Scholar 

  37. A. G. Rutkas and L. A. Vlasenko, “Solvability and completeness for an electrodynamical system of non-Kowalewski type,” Mat. Zametki, 53, 138–140 (1993).

    MATH  MathSciNet  Google Scholar 

  38. A. G. Rutkas and L. A. Vlasenko, “Uniqueness and approximation theorems for a certain degenerate operator-differential equation,” Mat. Zametki, 60, 597–600 (1996).

    MathSciNet  Google Scholar 

  39. A. Rutkas and L. Vlasenko, “Implicit differential equations and applications to electrodynamics,” Math. Meth. Appl. Sci., 23, 1–15 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  40. A. G. Rutkas and L. A. Vlasenko, “Existence of solutions of degenerate nonlinear differential operator equations,” in: Nonlinear Oscilations, Kiev (2001).

  41. A. G. Rutkas and L. A. Vlasenko, “The solvability of a nonlinear degenerate differential equation,” in: Proc. XXth Joint Session of the Petrovskii Seminar and the Moscow Mathematical Society, Moscow Univ. (2001), pp. 351–352.

  42. S. L. Sobolev, “On a certain new problem of mathematical physics,” Izv. Akad. Nauk, Ser. Mat., 18, No. 1, 3–50 (1954).

    MathSciNet  Google Scholar 

  43. L. A. Vlasenko, “Construction of solutions for certain classes of equations Au′(t) + Bu(t) = f(t),” Vestn. Khar’kov Univ., 286, 24–28 (1986).

    MATH  MathSciNet  Google Scholar 

  44. L. A. Vlasenko, “On completeness of normal solutions of the equation Au′(t) + Bu(t) = f(t),” Teor. Funkts. Funkts. Anal. Prilozh., (Khar’kov), 48, 46–51 (1987).

    MATH  Google Scholar 

  45. L. A. Vlasenko, “Completeness of elementary solutions of a certain operator-differential equation with delay,” Dokl. Nats. Akad. Nauk Ukrainy, 11, 15–19 (1998).

    MathSciNet  Google Scholar 

  46. L. A. Vlasenko, “Existence and uniqueness theorems for a certain implicit differential equation with delay,” Differ. Uravn., 36, No 5, 624–628 (2000).

    MathSciNet  Google Scholar 

  47. L. Vlasenko, “Implicit linear time-dependent differential-difference equations and applications,” Math. Meth. Appl. Sci., 23, 937–948 (2000).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Authors

Additional information

__________

Translated from Sovremennaya Matematika i Ee Prilozheniya (Contemporary Mathematics and Its Applications), Vol. 35, Voronezh Conference-2, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rutkas, A.G. Spectral methods for studying degenerate differential-operator equations. I. J Math Sci 144, 4246–4263 (2007). https://doi.org/10.1007/s10958-007-0267-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-007-0267-2

Keywords

Navigation