Skip to main content
Log in

Spaces of Riemannian metrics

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

In this paper, we consider spaces M of Riemannian metrics on a closed manifold M. In the case where the manifold M is equipped with a symplectic or contact structure, we consider spaces AM of associated metrics. We study geometric and topological properties of these spaces and Riemannian functionals on spaces of metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Abraham, “Transversality in manifolds of mappings,” Bull. Amer. Math. Soc., 69, 470–474 (1963).

    Article  MATH  MathSciNet  Google Scholar 

  2. R. Abraham and J. Marsden. Foundations of Mechanics, Benjamin, New York (1978).

    MATH  Google Scholar 

  3. D. V. Alekseevskii, “Compact quaternionic spaces,” Funct. Anal. Appl., 2, 11–20 (1968).

    MathSciNet  Google Scholar 

  4. D. V. Alekseevskii, “Quaternionic Riemannian spaces with a transitive reductive or solvable group of motions,” Funct. Anal. Appl., 4, 68–69 (1970).

    Article  MathSciNet  Google Scholar 

  5. D. V. Alekseevskii, “Conjugacy of polar factorizations of Lie groups,” Mat. Sb., 84, 14–26 (1971).

    MathSciNet  Google Scholar 

  6. D. V. Alekseevskii, “Classiffication of quaternionic spaces with a transitive solvable group of motions,” Izv. Akad. Nauk SSSR, Ser. Mat., 25, 93–117 (1975).

    Google Scholar 

  7. D. V. Alekseevskii, “Homogeneous Riemannian spaces of negative curvature,” Mat. Sb., 96, 93–117 (1975).

    MathSciNet  Google Scholar 

  8. D. V. Alekseevsky and B. N. Kimelfeld, “Structure of homogeneous Riemannian spaces with zero Ricci curvature,” Funct. Anal. Appl., 9, 27–102 (1975).

    Article  Google Scholar 

  9. D. V. Alekseevsky, I. Doti-Miatello, and C. Ferraris, “Homogeneous Ricci positive 5-manifolds,” Pac. J. Math., 175, 1–12 (1996).

    Google Scholar 

  10. M. T. Anderson, “The L 2 structure of moduli spaces of Einstein metrics on 4-manifolds,” Geom. Funct. Anal., 2, No. 1, 29–89 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  11. M. T. Anderson, “Degeneration of metrics with bounded curvature and applications to critical metrics of Riemannian functionals,” Proc. Symp. Pure Math., 54, Part 3, 53–79 (1993).

    Google Scholar 

  12. V. Apostolov and J. Armstrong, “Symplectic 4-manifolds with HermitianWeil tensor,” Trans. Amer. Math. Soc., 352, 4501–4513 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  13. V. Apostolov, J. Armstrong, and T. Draghici, “Local rigidity of certain classes of almost Kähler 4-manifolds,” Ann. Global Anal. Geom., 21, 151–176 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  14. V. Apostolov and T. Draghici, “Almost Kähler 4-manifolds with J-invariant Ricci tensor and special Weil tensor,” Quart. J. Math., 51, 275–294 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  15. H. Araujo, “Critical points of the total scalar curvature plus total mean curvature functional,” Indiana Univ. Math. J., 52, No. 1, 85–107 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  16. A. Arvanitoyergos, “SO(n)-invariant Einstein metrics on Stiefel manifolds,” in: Proc. Conf. Diff. Geom. Appl., Brno, 1995, pp. 1–5.

  17. A. Arvanitoyergos, “Einstein equations for invariant metric on generalized flag manifolds and inner automorphism,” Balkan J. Geom. Appl., 1, 17–22 (1996).

    Google Scholar 

  18. V. I. Averbukh and O. G. Smolyanov, “Theory of differentiation in topological vector spaces,” Usp. Mat. Nauk, 22, No. 6, 201–260 (1967).

    Google Scholar 

  19. V. I. Averbukh and O. G. Smolyanov, “Definitions of the derivative in topological vector spaces,” Usp. Mat. Nauk, 23, No. 4, 67–116 (1968).

    Google Scholar 

  20. A. Avez, “Applications de la formule de Gauss-Bonnet-Chern aux varietes à quatre dimensions,” C. R. Acad. Sci. Paris, 256, 5488–5490 (1963).

    MATH  MathSciNet  Google Scholar 

  21. L. Bérard Bergery, M. Berger, and C. Houzel, eds., Géométrie Riemannienne en Dimension 4. Seminaire Arthur Besse 1978/79, CEDIC/Fernand Nathan, Paris (1981).

    MATH  Google Scholar 

  22. M. Berger, “Sur la spectre d’une variete Riemannienne,” C. R. Acad. Sci. Paris, 263, 13–16 (1963).

    Google Scholar 

  23. M. Berger, “Quelques formules de variation pour une structure Riemannienne,” Ann. Sci. Ecole Norm. Super., IV. Ser., 3, No. 3, 285–294 (1970).

    MATH  Google Scholar 

  24. M. Berger, P. Gauduchon, and E. Mazet, “Le spectre d’une variete Riemannienne,” Lect. Notes Math., 194 (1971).

  25. M. Berger and D. Ebin, “Some decompositions of the space of symmetric tensors on a Riemannian manifold,” J. Differ. Geom., 3, No. 3, 379–392 (1969).

    MATH  MathSciNet  Google Scholar 

  26. A. L. Besse, Einstein Manifolds, Springer-Verlag, Berlin (1987).

    MATH  Google Scholar 

  27. D. E. Blair, “Contact manifolds in Riemannian geometry,” Lect. Notes Math., 509 (1976).

  28. D. E. Blair, “On the space of Riemannian metrics on surfaces and contact manifolds,” Lect. Notes Math., 792, 203–219 (1980).

    Article  MathSciNet  Google Scholar 

  29. D. E. Blair, “On the set of metrics associated to a symplectic or contact forms,” Bull. Inst. Math. Sinica, 11, 297–308 (1983).

    MATH  MathSciNet  Google Scholar 

  30. D. E. Blair, “Critical associated metrics on contact manifolds,” J. Austr. Math. Soc., Ser. A, 37, 82–88 (1984).

    MATH  MathSciNet  Google Scholar 

  31. D. E. Blair, “Critical associated metrics on contact manifolds, III,” J. Austr. Math. Soc., Ser. A, 50, 189–196 (1991).

    MATH  MathSciNet  Google Scholar 

  32. D. E. Blair, “The ‘total scalar curvature’ as a symplectic invariant,” in: Proc. 3 Congr. Geom., Thessaloniki (1991), pp. 79–83.

  33. D. E. Blair, “Spaces of metrics and curvature functionals,” in: Handbook of Differential Geometry, Vol. 1, North-Holland, Amsterdam (2000), pp. 153–158.

    Chapter  Google Scholar 

  34. D. E. Blair and S. Ianus, “Critical associated metrics on symplectic manifolds,” Contemp. Math., 51, 23–29 (1986).

    MathSciNet  Google Scholar 

  35. D. E. Blair and J. Ledger, “Critical associated metrics on contact manifolds, II,” J. Austr. Math. Soc., Ser. A, 43, 404–410 (1986).

    MathSciNet  Google Scholar 

  36. D. E. Blair and D. Perrone, “A variational characterization of contact metric manifolds with vanishing torsion,” Can. Math. Bull., 35, 455–462 (1992).

    MATH  MathSciNet  Google Scholar 

  37. D. E. Blair and D. Perrone, “Second variation of the ‘total scalar curvature’ on contact manifolds,” Can. Math. Bull., 38, 16–22 (1995).

    MATH  MathSciNet  Google Scholar 

  38. D. D. Bleecker, “Critical Riemannian manifolds,” J. Differ. Geom., 14, 599–608 (1979).

    MATH  MathSciNet  Google Scholar 

  39. C. Böhm and M. Kerr, Low-dimensional homogeneous Einstein manifolds, preprint (2002).

  40. C. Böhm, M. Wang, and W. Ziller, A variational approach for compact homogeneous Einstein manifolds, preprint (2002).

  41. C. Böhm. Homogeneous Einstein metrics and simplicial complexes, preprint (2003).

  42. S. Bochner, “Vectors fields and Ricci curvature,” Bull. Ann. Math. Soc., 52, 776–797 (1946).

    Article  MATH  MathSciNet  Google Scholar 

  43. J.-P. Bourguignon, “Une stratification de l’espace des structures Riemanniennes,” Commun. Math., 30, 1–41 (1975).

    MATH  MathSciNet  Google Scholar 

  44. J.-P. Bourguignon, D. G. Ebin, and J. E. Marsden, “Sur le noyau des pseudo-differentiels à symbole surjectif et non injectif,” C. R. Acad. Sci. Paris, Ser. A, 282, 867–870 (1976).

    MATH  MathSciNet  Google Scholar 

  45. J.-P. Bourguignon and J. P. Ezin, “Scalar curvature functions in a conformal class of metrics and conformal transformations,” Trans. Amer. Math. Soc., 310, No. 2, 867–870 (1987).

    MathSciNet  Google Scholar 

  46. D. Burns and P. de Bartolomeis, “Stability of vector bundles and extremal metrics,” Invent. Math., 92, 403–407 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  47. E. Calabi, “The space of Kähler metrics,” in: Proc. Int. Congr. Math., Vol. 2, Amsterdam (1954), pp. 206–207.

    Google Scholar 

  48. E. Calabi, “Extremal Kähler metrics,” Ann. Math. Stud., 102, 259–290 (1982).

    MathSciNet  Google Scholar 

  49. E. Calabi, “Extremal Kähler metrics, II,” in: Differential Geometry and Complex Analysis, Springer, Berlin (1985), pp. 95–114.

    Google Scholar 

  50. S. S. Chern and J. Simons, “Characteristic forms and geometric invariants,” Ann. Math., 99, 48–69 (1974).

    Article  MathSciNet  Google Scholar 

  51. S. S. Chern and R. S. Hamilton, “On Riemannian metrics adopted to three-dimensional contact manifolds,” Lect. Notes Math., 1111, 279–308 (1985).

    Article  MathSciNet  Google Scholar 

  52. J. Davidov and O. Muskarov, “Twistor spaces with Hermitian Ricci tensor,” Proc. Amer. Math. Soc., 109, 1115–1120 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  53. N. A. Daurtseva and N. K. Smolentsev, On the space of almost complex structures, Preprint mathDG/0202139, http://xxx.lanl.gov.

  54. N. A. Daurtseva, U(n+1) × U(p+1)-Invariant Hermitian metrics with Hermitian tensor Ricci on the manifold S 2n+1 × S 2p+1, Preprint mathDG/0310124, http://xxx.lanl.gov.

  55. P. Delanoe, “On Bianchi identities,” Rend. Circ. Mat. Palermo, 51, Ser. 2, 237–248 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  56. B. S. DeWitt, “Quantum theory of gravity. I. The canonical theory,” Phys. Rev., 160, 1113–1148 (1967).

    Article  MATH  Google Scholar 

  57. T. Draghici, “On the almost Kähler 4-manifolds with Hermitian Ricci tensor,” Houston J. Math., 20, No. 2, 293–298 (1994).

    MATH  MathSciNet  Google Scholar 

  58. T. Draghici, “On some 4-dimensional almost Kähler manifolds,” Kodai Math. J., 18, 156–168 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  59. T. Draghici, “Almost Kähler 4-manifolds with J-invariant Ricci tensor,” Houston J. Math., 25, 133–145 (1999).

    MATH  MathSciNet  Google Scholar 

  60. C. J. Earle and J. Eells, “A fibre bundle description of Teichmüller theory,” J. Differ. Geom., 3, 19–43 (1969).

    MATH  MathSciNet  Google Scholar 

  61. J. Eells, “On the geometry of function spaces,” in: Symposium de Topologia Algebra, Mexico (1958), pp. 303–307.

  62. J. Eells, “On submanifolds of certain function spaces,” Proc. Nat. Acad. Sci., 45, No. 10, 1520–1522 (1959).

    Article  MATH  MathSciNet  Google Scholar 

  63. D. Ebin, “The manifold of Riemannian metrics,” Proc. Symp. Pure Math., 15, 11–40 (1970).

    MathSciNet  Google Scholar 

  64. D. Ebin and J. Marsden, “Groups of diffeomorphisms and the motion of an incompressible fluid,” Ann. Math., 92, No. 1, 102–163 (1970).

    Article  MathSciNet  Google Scholar 

  65. J. Eichorn, “The Banach manifold structure of the space of metrics on noncompact manifolds,” Differ. Geom. Appl., 1, 89–108 (1991).

    Article  Google Scholar 

  66. J. Eichorn, “Spaces of Riemannian metrics on open manifolds,” Results Math., 27, 256–283 (1995).

    MathSciNet  Google Scholar 

  67. J. Eichorn, “Diffeomorphism groups on noncompact manifolds,” Zap. Nauch. Semin. POMI, 234, 41–64 (1996).

    Google Scholar 

  68. J. Eichorn, “Poincare’s theorem and Teichmüller theory for open surfaces,” Asian J. Math., 2, No. 2, 355–403 (1998).

    MathSciNet  Google Scholar 

  69. J. Eichorn, “A classiffication approach for open manifolds,” Zap. Nauch. Semin. POMI, 267, 9–45 (2000).

    Google Scholar 

  70. H. I. Eliasson, “On the geometry of manifold of maps,” J. Differ. Geom., 1, 169–194 (1967).

    MATH  MathSciNet  Google Scholar 

  71. H. I. Eliasson, “On variations of metrics,” Math. Scand., 29, 317–372 (1971).

    MathSciNet  Google Scholar 

  72. J. F. Escobar, “The Yamabe problem on manifolds with boundary,” J. Differ. Geom., 35, 21–84 (1992).

    MATH  MathSciNet  Google Scholar 

  73. J. F. Escobar, “Conformal deformation of Riemannian metric to a scalar flat metric with constant mean curvature on the boundary,” Ann. Math., 136, No. 2, 1–50 (1992).

    MathSciNet  Google Scholar 

  74. J. F. Escobar, “Conformal deformation of Riemannian metric to a constant scalar curvature metric with constant mean curvature on the boundary,” Indiana Univ. Math. J., 45, 917–943 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  75. A. Fathi and L. Flaminio, “Infinitesimal conjugacies and Weil-Petersson metric,” Ann. Inst. Fourier, 43, No. 1, 279–299 (1993).

    MATH  MathSciNet  Google Scholar 

  76. A. Fischer, “The theory of superspaces,” in: Relativity, Plenum Press, New York (1970), pp. 303–357.

    Google Scholar 

  77. A. Fischer, “Unfolding the singularities in superspaces,” Gen. Relativity Gravitation, 15, 1191–1198 ().

  78. A. Fischer, “Resolving the singularities in the space of Riemannian geometries,” J. Math. Phys., 27, No. 3, 718–738 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  79. A. Fischer and J. Marsden, “Linearization stabillity of nonlinear partial differential equations,” Proc. Symp. Pure Math., 27, Part 2, 219–263 (1975).

    MathSciNet  Google Scholar 

  80. A. Fischer and J. Marsden, “Deformations of the scalar curvature,” Duke Math. J., 42, 519–547 (1975).

    Article  MATH  MathSciNet  Google Scholar 

  81. A. Fischer and J. Marsden, “The manifold of conformally equivalent metrics,” Can. J. Math., 29, No. 1, 193–209 (1977).

    MATH  MathSciNet  Google Scholar 

  82. A. Fischer and A. Tromba, “On a purely ‘Riemannian’ proof of the structure and dimension of the unramified moduli space of a compact Riemannian surface,” Math. Ann., 267, 311–345 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  83. A. Fischer and A. Tromba, “Almost complex principal fiber bundles and the complex structure on Teichmüller space,” J. Reine Angew. Math., 352, 151–160 (1984).

    MATH  MathSciNet  Google Scholar 

  84. A. Fischer and A. Tromba, “On the Weil-Petersson metric on Teichmüller space,” Trans. Amer. Math. Soc., 284, No. 1, 329–335 (1984).

    Article  MathSciNet  Google Scholar 

  85. A. Fischer and A. Tromba, “A new proof that Teichmüller space is a cell,” Trans. Amer. Math. Soc., 303, No. 1, 257–262 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  86. D. S. Freed and D. Groisser, “The basic geometry of the manifold of Riemannian metrics and of its quotient by the diffeomorphism group,” Michigan Math. J., 36, No. 3, 323–344 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  87. A. Fujiki, “Coarse moduli spaces for polarized Kähler manifolds,” Publ. RIMS, Kyoto Univ., 20, 977–1005 (1984).

    MATH  MathSciNet  Google Scholar 

  88. A. Fujiki, “Remarks on extremal Kähler metrics on ruled manifolds,” Nagoya Math. J., 126, 89–101 (1992).

    MATH  MathSciNet  Google Scholar 

  89. A. Fujiki and G. Schumacher, “The moduli space of Kähler structures on a real compact symplectic manifold,” Publ. RIMS, Kyoto Univ., 24, No. 1, 141–168 (1988).

    MATH  MathSciNet  Google Scholar 

  90. A. Fujiki and G. Schumacher, “The moduli space of extremal compact Kähler manifolds and generalized Weil-Petersson metrics,” Publ. RIMS, Kyoto Univ., 26, 101–183 (1990).

    MATH  MathSciNet  Google Scholar 

  91. A. Futaki, “An obstruction to the existence of Einstein Kähler metrics,” Invent. Math., 73, No. 3, 438–443 (1983).

    Article  MathSciNet  Google Scholar 

  92. A. Futaki, “On compact Kähler manifolds of constant scalar curvature,” Proc. Japan Acad. Ser. A, 59, 401–402 (1983).

    MATH  MathSciNet  Google Scholar 

  93. A. Futaki and T. Mabuchi, “Bilinear forms and extremal Kähler vector fields associated with Kähler classes,” Math. Ann., 301, 199–210 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  94. O. Gil-Medrano and P. Michor, “The Riemannian manifold of all Riemannian metrics,” Quart. J. Math. Oxford, 42, No. 2, 183–202 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  95. P. Gauduchon, “Variation des courbures scalaires en geometrie hermitienne,” C. R. Acad. Sci. Paris, 290, 327–330 (1980).

    MATH  MathSciNet  Google Scholar 

  96. P. Gauduchon, “La 1-forme de torsion d’une variete hermitienne compacte,” Math. Ann., 267, 495–518 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  97. P. Gilkey, “The spectral geometry of a Riemannian manifold,” J. Differ. Geom., 10, 601–618 (1975).

    MATH  MathSciNet  Google Scholar 

  98. S. I. Goldberg, “Integrability of almost Kähler manifolds,” Proc. Amer. Math. Soc., 21, 96–100 (1969).

    Article  MATH  MathSciNet  Google Scholar 

  99. C. S. Gordon and M. Kerr, “New homogeneous metrics of negative Ricci curvature,” Ann. Global Anal. Geom., 19, 1–27 (2001).

    Article  MathSciNet  Google Scholar 

  100. C. S. Gordon and Z. I. Szabo, “Isospectral deformations of negatively curved Riemannian manifolds with boundary which are not locally isometric,” Duke Math. J., 113, No. 2, 355–383 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  101. H. Grauert and R. Remmert, “Über kompakte homogene komplexe Mannigfaltigkeiten,” Arch. Math., 13, 498–507 (1962).

    Article  MATH  MathSciNet  Google Scholar 

  102. J. Gravesen, “Complex structures in the Nash-Moser category,” Ann. Global Anal. Geom., 7, No. 2, 155–161 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  103. D. Gromoll, W. Klingenberg, and W. Meyer, Riemannsche Geometrie im Großen, Lect. Notes Math., 55, Springer-Verlag, Berlin-Heidelberg-New York (1975).

    MATH  Google Scholar 

  104. M. Gromov, “Pseudoholomorphic curves in symplectic manifolds,” Invent. Math., 82, No. 2, 307–347 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  105. M. Gromov, “Soft and hard symplectic geometry,” in: Proc. Int. Congr. Math., (1987), pp. 81–98.

  106. V. Guillemin and S. Sternberg, “Remarks on a paper of Hermann,” Trans. Amer. Math. Soc., 130, 110–116 (1968).

    Article  MATH  MathSciNet  Google Scholar 

  107. R. S. Hamilton, “The inverse function theorem of Nash and Moser,” Bull. Amer. Math. Soc., 7, No. 1, 65–222 (1982).

    Article  MATH  MathSciNet  Google Scholar 

  108. J. Heber, “Noncompact homogeneous Einstein spases,” Invent. Math., 133, 279–352 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  109. S. Helgason, Differential Geometry and Symmetric Spaces, Pure Appl. Math., 12, Academic Press, New York-London (1962).

    Google Scholar 

  110. R. Hermann, “The formal linearization of a semi-simple Lie algebra of vector fields about a singular point,” Trans. Amer. Math. Soc., 130, 105–109 (1968).

    Article  MATH  MathSciNet  Google Scholar 

  111. D. Hilbert, “Die grundlagen der Physik,” Nachr. Ges. Wiss. Gottingen, 395–407 (1915).

  112. A. D. Hwang, “Extremal Kähler metrics and the Calabi energy,” Proc. Japan Acad. Ser. A, Math. Sci., 71, 128–129 (1995).

    MATH  MathSciNet  Google Scholar 

  113. A. D. Hwang, “On the Calabi energy of extremal Kähler metrics,” Int. J. Math., 6, No. 6, 825–830 (1995).

    Article  MATH  Google Scholar 

  114. A. D. Hwang and S. G. Simanca, “Distinguished Kähler metrics on Hirzebruch surfaces,” Trans. Amer. Math. Soc., 347, No. 1, 1013–1021 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  115. S. Ishihara, “Homogeneous Riemannian spaces of four dimensions,” J.Math. Soc. Japan, 7, 345–370 (1955).

    MATH  MathSciNet  Google Scholar 

  116. M. Itoh, “Conformal geometry of Ricci flat 4-manifolds,” Kodai Math. J., 17, 179–200 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  117. G. R. Jensen, “Homogeneous Einstein spaces of dimension 4,” J. Differ. Geom., 3, 309–349 (1969).

    MATH  Google Scholar 

  118. G. R. Jensen, “The scalar curvature of left invariant Riemannian metrics,” Indiana Univ. Math. J., 20, 1125–1143 (1971).

    Article  MathSciNet  Google Scholar 

  119. G. R. Jensen, “Einstein metrics on principal fibre bundles,” J. Differ. Geom., 8, 599–614 (1973).

    MATH  Google Scholar 

  120. J. L. Kazdan, “Another proof of Bianchi’s identity in Riemannian geometry,” Proc. Amer. Math. Soc., 81, No. 2, 341–342 (1981).

    Article  MATH  MathSciNet  Google Scholar 

  121. J. L. Kazdan and F. W. Warner, “Scalar curvature and conformal deformation of Riemannian structure,” J. Differ. Geom., 10, No. 1, 113–134 (1975).

    MATH  MathSciNet  Google Scholar 

  122. J. L. Kazdan and F. W. Warner, “Existence and conformal deformation of of metrics with prescribed Gaussian and scalar curvatures,” Ann. Math., 101, 317–331 (1975).

    Article  MathSciNet  Google Scholar 

  123. J. L. Kazdan and F. W. Warner, “Prescribing curvatures,” Proc. Symp. Pure Math., 27, Part 2, 309–319 (1975).

    MathSciNet  Google Scholar 

  124. J. L. Kazdan and F. W. Warner, “A direct approach to the determination of Gaussian and scalar curvature functions,” Invent. Math., 28, No. 3, 227–230 (1975).

    Article  MATH  MathSciNet  Google Scholar 

  125. M. Kerr, “Some new homogeneous Einstein metrics on symmetric spaces,” Trans. Amer. Math. Soc., 348, 153–171 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  126. M. Kerr, “New examples of homogeneous Einstein metrics,” Michigan J. Math., 45, 115–134 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  127. M. Kerr, A deformation of quaternionic hyperbolic space, Preprint (2002).

  128. B. H. Kim, “Warped products with critical Riemannian metric,” Proc. Japan Acad. Ser. A, Math. Sci., 71, 117–118 (1995).

    MATH  MathSciNet  Google Scholar 

  129. J. Kim and C. Sung, “Deformations of almost Kähler metrics with constant scalar curvature on compact Kähler manifolds,” Ann. Global Anal. Geom., 22, 49–73 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  130. O. Kobayashi, “A differential equation arising from scalar curvature function,” J. Math. Soc. Japan, 34, No. 4, 665–675 (1982).

    MATH  MathSciNet  Google Scholar 

  131. O. Kobayashi, “On a conformally invariant functional of the space of Riemannian metrics,” J. Math. Soc. Japan, 37, No. 3, 373–389 (1985).

    MATH  MathSciNet  Google Scholar 

  132. Sh. Kobayashi, Transformation Groups in Differential Geometry, Springer-Verlag, Berlin-Heidelberg-New York (1972).

    MATH  Google Scholar 

  133. Sh. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. 1, Interscience Publishers, New York-London (1963); Vol. 2 (1969).

    MATH  Google Scholar 

  134. T. Koda, “Critical almost Hermitian structures,” Indian J. Pure Appl. Math. Soc., 26, 679–690 (1995).

    MATH  MathSciNet  Google Scholar 

  135. N. Koiso, “Non-deformability of Einstein metrics,” Osaka J. Math., 15, 419–433 (1978).

    MATH  MathSciNet  Google Scholar 

  136. N. Koiso, “Einstein metrics and complex structures,” Invent. Math., 73, No. 1, 71–106 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  137. N. Koiso, “A decomposition of the space M of Riemannian metrics on a manifold,” Osaka J. Math., 16, 423–429 (1979).

    MATH  MathSciNet  Google Scholar 

  138. N. H. Kuiper, “On compact conformally Euclidean spaces of dimension >2,” Ann. Math., 52, 478–490 (1950).

    Article  MathSciNet  Google Scholar 

  139. J. Lafontaine, “Sur la geometrie d’une generalisation de l’equation d’Obata,” J. Math. Pures Appl., 62, 63–72 (1983).

    MATH  MathSciNet  Google Scholar 

  140. F. Lamontagne, “Une remarque sur la norme L 2 du tenseur de courbure,” C. R. Acad. Sci. Paris, 319, 237–240 (1994).

    MATH  MathSciNet  Google Scholar 

  141. S. Lang, Differential Manifolds, Addison-Wesley, Reading, Massachusetts (1972).

    MATH  Google Scholar 

  142. C. LeBrun, Explicit self-dual metrics on ℂP 2#…ℂP 2, Preprint, Princeton (1989).

  143. C. LeBrun and S. Simanca, “On the Kähler classes of extremal metrics,” in: Geom. Global Anal., Sendai (1993), pp. 255–271.

  144. C. LeBrun and S. Simanca, “Extremal Kähler metrics and complex deformation theory,” Geom. Funct. Anal., 4, 298–336 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  145. J. Leslie, “On a differential structure for the group of diffeomorphisms,” Topology, 6, 263–271 (1967).

    Article  MATH  MathSciNet  Google Scholar 

  146. M. Levin, “A remark on extremal Kähler metrics,” J. Differ. Geom., 21, 73–77 (1985).

    Google Scholar 

  147. A. Lihnerowicz, “Propogateurs et commutateurs en relative generale,” Publ. Math. Inst. des Hautes Etudes Sci., 10, 293–344 (1961).

    Google Scholar 

  148. A. Lihnerowicz, “Spineurs harmoniques,” C. R. Acad. Sci. Paris, 257, 7–9 (1963).

    MathSciNet  Google Scholar 

  149. D. Lovelock, “The Einstein tensor and its generalizations,” J. Math. Phys., 12, 498–501 (1971).

    Article  MATH  MathSciNet  Google Scholar 

  150. L. Maxim-Raileanu, “The manifold of Riemannian metrics on a compact manifold with boundary,” An. St. Univ. “Al. I. Cusa” Iasi. Ser. 1a, 34, No. 2, 67–72 (1988).

    MATH  Google Scholar 

  151. L. Maxim-Raileanu, “Critical mapping of Riemannian manifolds and the slice theorem for an action of the diffeomorphism group,” An. St. Univ. “Al. I. Cusa” Iasi. Ser. 1a, 34, No. 2, 149–152 (1988).

    MATH  MathSciNet  Google Scholar 

  152. H. P. McKean and I. M. Singer, “Curvature and the eigenvalues of the Laplacian,” J. Differ. Geom., 1, 43–69 (1967).

    MATH  MathSciNet  Google Scholar 

  153. P. Michor, “Manifolds of smooth maps,” Cahiers Topol. Geom. Differ., 19, No. 1, 47–78 (1978).

    MathSciNet  MATH  Google Scholar 

  154. P. Michor, “Manifolds of smooth maps, II. The Lie group of diffeomorphisms of a non-compact smooth manifolds,” Cahiers Topol. Geom. Differ., 21, No. 1, 63–86 (1980).

    MathSciNet  MATH  Google Scholar 

  155. J. W. Milnor, “Eigenvalues of the Laplace operator on certain manifolds,” Proc. Nat. Acad. Sci. USA, 51, 542 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  156. J. W. Milnor, “Remarks on infinite-dimensional Lie groups,” in: Relativity, Groups, and Topology, II, Les Houches Session XL, 1983 (B. S. de Witt and R. Stora, Eds.), North-Holland, Amsterdam (1984).

    Google Scholar 

  157. S. Minakshisundaram and A. Pleijel, “Some properties of the eigenfunctions of the Laplace operator on Riemannian manifolds,” Can. J. Math., 1, 242–256 (1949).

    MATH  MathSciNet  Google Scholar 

  158. J. Moser, “On the volume elements on a manifold,” Trans. Amer. Math. Soc., 120, 286–294 (1965).

    Article  MATH  MathSciNet  Google Scholar 

  159. O. Muskarov, “On Hermitian surfaces with J-invariant Ricci tensor,” J. Geom., 72, 151–156 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  160. Y. Muto, “On Einstein metrics,” J. Differ. Geom., 9, No. 4, 521–530 (1974).

    MATH  MathSciNet  Google Scholar 

  161. Y. Muto, “Curvature and critical Riemannian metric,” J. Math. Soc. Japan, 26, No. 4, 686–897 (1974).

    MATH  MathSciNet  Google Scholar 

  162. Y. Muto, “Critical Riemannian metrics,” Tensor N. S., 29, 125–133 (1975).

    MATH  MathSciNet  Google Scholar 

  163. Y. Muto, “Critical Riemannian metrics on product manifolds,” Kodai Math. Sem. Rep., 26, 409–423 (1975).

    Article  MATH  MathSciNet  Google Scholar 

  164. Y. Muto, “Curvature and critical Riemannian metric,” Proc. Symp. Pure Math., 27, Part 1, 97–100 (1975).

    MathSciNet  Google Scholar 

  165. Y. Muto, “Riemannian submersions and critical Riemannian metric,” J. Math. Soc. Japan, 29, 493–511 (1977).

    MATH  MathSciNet  Google Scholar 

  166. S. B. Myers, “Riemannian manifolds with positive mean curvature,” Duke Math. J., 8, 401–404 (1941).

    Article  MATH  MathSciNet  Google Scholar 

  167. M. Neuwirther, “Submanifold geometry and Hessians on the pseudoriemannian manifold of metrics,” Acta Math. Univ. Comenianae, 62, No. 1, 51–85 (1993).

    MATH  MathSciNet  Google Scholar 

  168. Yu. G. Nikonorov, “Functional of scalar curvature and homogeneous Einsteinian metrics on Lie groups,” Sib. Mat. Zh., 39, No. 3, 583–589 (1998).

    MATH  MathSciNet  Google Scholar 

  169. Yu. G. Nikonorov, “New series of Einstein homogeneous metrics,” Differ. Geom. Appl., 12, 25–34 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  170. Yu. G. Nikonorov, “On one class of homogeneous compact Einstein manifolds,” Sib. Mat. Zh., 41, No. 1, 200–205 (2000).

    MATH  MathSciNet  Google Scholar 

  171. Yu. G. Nikonorov, “Algebraic structure of standard homogeneous Einstein manifolds,” Mat. Tr., 3, No. 1, 119–143 (2000).

    MATH  MathSciNet  Google Scholar 

  172. Yu. G. Nikonorov, “On the Ricci curvature of homogeneous metrics on noncompact homogeneous space,” Sib. Mat. Zh., 41, No. 2, 421–429 (2000).

    MATH  MathSciNet  Google Scholar 

  173. Yu. G. Nikonorov, “Compact seven-dimensional homogeneous Einstein manifolds,” Dokl. Ross. Akad. Nauk, 372, No. 5, 589–592 (2000).

    MathSciNet  Google Scholar 

  174. Yu. G. Nikonorov, “Classification of invariant Einstein metrics on the Aloff-Wallach spaces,” Sib. Adv. Math., 13, No. 4, 70–89 (2003).

    MATH  MathSciNet  Google Scholar 

  175. Yu. G. Nikonorov, “Invariant Einstein metrics on the Ledger-Obata spaces,” St. Petersburg Math. J., 14, No. 3, 487–497 (2003).

    MathSciNet  Google Scholar 

  176. Yu. G. Nikonorov and E. D. Rodionov, “Standard homogeneous Einstein manifolds and Diophantine equations,” Arch. Math., 32, 123–136 (1996).

    MATH  MathSciNet  Google Scholar 

  177. Yu. G. Nikonorov and E. D. Rodionov, “Compact six-dimensional homogeneous Einstein manifolds,” Dokl. Ross. Akad. Nauk, 366, No. 5, 599–601 (1999).

    MATH  MathSciNet  Google Scholar 

  178. Yu. G. Nikonorov and E. D. Rodionov, “Compact homogeneous Einstein 6-manifolds,” Differ. Geom. Appl., 19. 369–378 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  179. P. Nurowski and M. Przanowski, “A four-dimensional example of Ricci flat metric admitting almost Kähler non-Kähler structure,” Class. Quantum Gravit., 16, L9–L13 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  180. M. Obata, “Certain conditions for a Riemannian manifold to be isometric to a sphere,” J. Math. Soc. Japan, 14, 333–340 (1962).

    Article  MATH  MathSciNet  Google Scholar 

  181. H. Omori, “On the group of diffeomorphisms on a compact manifold,” Proc. Symp. Pure Math., 15, 167–183 (1970).

    MathSciNet  Google Scholar 

  182. H. Omori, Infinite-Dimensional Lie Transformations Groups, Lect. Notes Math., 427 (1974).

  183. R. S. Palais, “On the differentiability of isometries,” Proc. Amer. Math. Soc., 8, 805–807 (1957).

    Article  MATH  MathSciNet  Google Scholar 

  184. R. S. Palais, Seminar on the Atiyah-Singer Index Theorem, Princeton Univ. Press, Princeton, New Jersey (1965).

    MATH  Google Scholar 

  185. R. S. Palais, “The principle of symmetric criticality,” Commun. Math. Phys., 69, 19–30 (1979).

    Article  MATH  MathSciNet  Google Scholar 

  186. R. S. Palais, “Applications of the symmetric criticality principle to mathematical physics and differential geometry,” in: Proc. Symp. Differ. Geom. Differ. Equations, Shanghai-Hefei 1981 (1985), pp. 247–302.

  187. R. S. Palais, Foundations of Global Nonlinear Analysis, Benjamin, New York (1968).

    Google Scholar 

  188. E. M. Patterson, “A class of critical Riemannian metrics,” J. London Math. Soc., 2, 349–358 (1981).

    Article  MathSciNet  Google Scholar 

  189. H. Pedersen and Y. S. Poon, “Hamiltonian construction of Kähler-Einstein metrics and metrics of constant scalar curvature,” Commun. Math. Phys., 136, No. 2, 309–326 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  190. O. Pekonen, “On the De Witt metric,” J. Geom. Phys., 4, No. 4, 493–502 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  191. O. Pekonen, “On the variational characterization of conformally flat 3-manifolds,” J. Geom. Phys., 7, No. 1, 109–117 (1987).

    Article  MathSciNet  Google Scholar 

  192. O. Pekonen, “A short proof of a theorem of Ahlfors,” Lect. Notes in Math., 1351, 273–278 (1988).

    Article  MathSciNet  Google Scholar 

  193. O. Pekonen, “Slice theorem for the action of the diffeomorphism groups on the space of almost complex structures on a compact manifold,” Bull. Polish Acad. Sci. Math., 37, Nos. 7–12, 545–548 (1989).

    MATH  MathSciNet  Google Scholar 

  194. D. Perrone, “Torsion and critical metrics on contact three-manifolds,” Kodai Math. J., 13, 88–100 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  195. D. Perrone, “Torsion tensor and critical metrics on contact 2n+1-manifolds,” Monatsh. Math., 114, 245–259 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  196. A. Pressley and G. Segal, Loop Groups, Oxford Math. Monogr., Clarendon Press, Oxford (1988).

    MATH  Google Scholar 

  197. T. Ratiu and R. Shmid, “The differentiable structure of three remarkable diffeomorphism groups,” Math. Z., 177, 81–100 (1981).

    Article  MATH  MathSciNet  Google Scholar 

  198. E. D. Rodionov, “Standard homogeneous Einstein manifolds,” Dokl. Ross. Akad. Nauk, 328, No. 2, 147–149 (1993).

    MathSciNet  Google Scholar 

  199. R. Schoen, “Conformal deformations of Riemannian metrics to constant scalar curvature,” J. Differ. Geom., 20, 479–495 (1984).

    MATH  MathSciNet  Google Scholar 

  200. D. Schueth, “On the ’standard’ condition for noncompact homogeneous Einstein spaces,” Geom. Dedicata, 105, 77–83 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  201. G. Schumacher, “Construction of the coarse moduli space of compact polarized Kähler manifolds with c 1 = 0,” Math. Ann., 264, 81–90 (1983).

    Article  MathSciNet  Google Scholar 

  202. G. Schumacher, “Moduli of polarized Kähler manifolds,” Math. Ann., 269, 137–144 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  203. G. Schumacher, “On the geometry of moduli spaces,” Manuscr. Math., 50, Nos. 1–3, 229–267 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  204. G. Schumacher, “Harmonic maps of the moduli space of compact Riemann surfaces,” Math. Ann., 275, 466 (1986).

    Article  MathSciNet  Google Scholar 

  205. G. Schumacher, “The theory of Teichmüller spaces. A view towards moduli spaces of Kähler manifolds,” Encycl. Math. Sci., 69, 251–310 (1990).

    MathSciNet  Google Scholar 

  206. G. Schumacher, “Moduli spaces of compact Kähler manifolds. The generalized Petersson-Weil metric and positive line bundles on moduli spaces,” Rev. Roumaine Math. Pures Appl., 36, Nos. 5–6, 291–308 (1991).

    MathSciNet  MATH  Google Scholar 

  207. K. Sekigawa, “On some compact Einstein almost Kähler manifolds,” J. Math. Soc. Japan, 39, 677–684 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  208. Shen Ying, “A note on Fischer-Marsden conjecture,” Proc. Amer. Math. Soc., 125, No. 3, 901–905 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  209. S. Simanca, “A note on extremal metrics of nonconstant scalar curvature,” Israel. J. Math., 78, 85–93 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  210. S. Simanca, Heat flows for extremal Kähler metrics, Preprint mathDG/0310363 (2003), http: xxx.lanl.gov.

  211. N. K. Smolentsev, “On the Maupertuis principle,” Sib. Mat. Zh., 20, No. 5, 1092–1098 (1979).

    MathSciNet  Google Scholar 

  212. N. K. Smolentsev, “Flow integrals of an ideal barotropic fliud,” Sib. Mat. Zh., 23, No. 1, 205–208 (1982).

    MATH  MathSciNet  Google Scholar 

  213. N. K. Smolentsev, “On the space of K-contact metrics of a three-dimensional manifold,” Sib. Mat. Zh., 28, No. 6, 119–125 (1987).

    MATH  MathSciNet  Google Scholar 

  214. N. K. Smolentsev, “Orthogonal decompositions of the space of symmetric tensors on an almost Kählerian manifold,” Sib. Mat. Zh., 30, No. 3, 131–139 (1989).

    MATH  MathSciNet  Google Scholar 

  215. N. K. Smolentsev, “On the space of associated metrics on a regular contact manifold,” Sib. Mat. Zh., 31, No. 3, 176–185 (1990).

    MathSciNet  Google Scholar 

  216. N. K. Smolentsev, “On the curvature of the space of associated metrics on a symplectic manifold,” Sib. Mat. Zh., 33, No. 1, 132–139 (1992).

    MATH  MathSciNet  Google Scholar 

  217. N. K. Smolentsev, “On the curvature of the space of associated metrics on a contact manifold,” Sib. Mat. Zh., 33, No. 6, 188–194 (1992).

    MATH  MathSciNet  Google Scholar 

  218. N. K. Smolentsev, “Natural weak Riemannian structures on the space of Riemannian metrics,” Sib. Mat. Zh., 35, No. 2, 439–445 (1994).

    MathSciNet  Google Scholar 

  219. N. K. Smolentsev, “Critical associated metrics on a symplectic manifold,” Sib. Mat. Zh., 36, No. 2, 359–367 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  220. N. K. Smolentsev, “On the space of Riemannian metrics on symplectic and contact manifolds,” Sib. Mat. Zh., 42, No. 6, 1402–1407 (2001).

    MathSciNet  Google Scholar 

  221. N. K. Smolentsev, “On the spaces of associated metrics on the sphere and torus,” Vestn. Kemerovo Univ., Ser. Mat., 4, 237–245 (2000).

    Google Scholar 

  222. N. K. Smolentsev, The space of associated metrics on a symplectic manifold, Preprint mathDG/0108110 (2001), http:xxx.lanl.gov.

  223. T. N. Subramanian, Slices for the actions of smooth tame Lie groups, Thesis (1974).

  224. T. N. Subramanian, “Slices for actions of infinite-dimensional groups,” Contemp. Math., 54, 65–77 (1986).

    Google Scholar 

  225. R. C. Swanson and C. C. Chicone, “Equivalence and slice theory for symplectic forms on closed manifolds,” Proc. Amer. Math. Soc., 73, No. 2, 265–270 (1979).

    Article  MATH  MathSciNet  Google Scholar 

  226. S. T. Swift, “Natural bundles, I. A minimal resolution of superspace,” J. Math. Phys., 33, 3723–3730 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  227. S. Tanno, “Variational problems on contact Riemannian manifolds,” Trans. Amer. Math. Soc., 314, No. 1, 349–379 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  228. V. V. Trofimov and A. T. Fomenko, “Riemannian geometry,” J. Math. Sci., 109, No. 2, 1345–1501 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  229. A. J. Tromba, “On a natural algebraic affine connection on the space of almost complex structures and the curvature of Teichmüller space with respect to its Weil-Petersson metric,” Manuscr. Math., 56, No. 4, 475–497 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  230. A. J. Tromba, “On an energy function for the Weil-Petersson metric on Teichmüller space,” Manuscr. Math., 59, 249–260 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  231. I. Vaisman, “On some variational problems for two-dimensional Hermitian metrics,” Ann. Global Anal. Geom., 8, No. 2, 137–145 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  232. H. C. Wang, “Closed manifolds with homogeneous complex structure,” Amer. J. Math., 76, 1–32 (1954).

    Article  MATH  MathSciNet  Google Scholar 

  233. M. Wang, “Some examples of homogeneous Einstein manifolds in dimension seven,” Duke Math. J., 49, 23–28 (1982).

    Article  MATH  MathSciNet  Google Scholar 

  234. M. Wang, “Einstein metrics from symmetry and bundle constructions,” in: Surv. Differ. Geom., Vol. 6, Essays on Einstein Manifolds (C. LeBrun and M. Wang, eds.), International Press (1999), pp. 287–325.

  235. M. Wang and W. Ziller, “On the isotropy representation of a symmetric space,” in: Proc. Conf. “Differential Geometry on Homogeneous Spaces,” Torino (1983), pp. 253–261.

  236. M. Wang and W. Ziller, “On normal homogeneous Einstein manifolds,” Ann. Sci. Ecole Norm. Super., 18, 563–633 (1985).

    MATH  MathSciNet  Google Scholar 

  237. M. Wang and W. Ziller, “Existence and non-existence of homogeneous Einstein metrics,” Invent. Math., 84, 177–194 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  238. M. Wang and W. Ziller, “Einstein metrics on principal bundles,” J. Differ. Geom., 31, 215–248 (1990).

    MATH  MathSciNet  Google Scholar 

  239. M. Wang and W. Ziller, “On isotropy irreducible Riemannian manifolds,” Acta Math., 166, 223–261 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  240. J. A. Wolf, “The geometry and structure of isotropy irreducible homogeneous spaces,” Acta Math., 120, 59–148 (1968); Erratum, Acta Math., 152, 141–142 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  241. J. A. Wolf, “Local and global equivalence for flat affine manifolds with parallel geometric structures,” Geom. Dedicata, 2, 127–132 (1973).

    Article  MATH  Google Scholar 

  242. J. A. Wolf, Spaces of Constant Curvature, Publish or Perish, Boston, Massachusetts (1974).

    MATH  Google Scholar 

  243. X. Xu, “On the existence of extremal metrics,” Pac. J. Math., 174, 555–568 (1996).

    MATH  Google Scholar 

  244. S. Yamada, “Weil-Petersson convexity of the energy functional on classical and universal Teichmüller spaces,” J. Differ. Geom., 51, 35–96 (1999).

    MATH  Google Scholar 

  245. S. Yamaguchi and G. Chuman, “Critical Riemannian metrics on Sasakian manifolds,” Kodai Math. J., 6, 1–13 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  246. D. Yang, “Existence and regularity of energy-minimizing Riemannian metrics,” Int. Math. Res. Notes, 2, 7–13 (1991).

    Article  Google Scholar 

  247. J. W. York, “Conformally invariant orthogonal decomposition of symmetric tensors on Riemannian manifolds and the initial value problem of general relativity,” J. Math. Phys., 14, 456–464 (1973).

    Article  MATH  MathSciNet  Google Scholar 

  248. J. W. York, “Covariant decompositions of symmetric tensors in the theory of gravitation,” Ann. Inst. H. Poincaré, 21, 319–332 (1974).

    MathSciNet  Google Scholar 

  249. W. Ziller, “Homogeneous Einstein metrics on spheres and projective spaces,” Math. Ann., 259, 351–358 (1982).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Authors

Additional information

__________

Translated from Sovremennaya Matematika i Ee Prilozheniya (Contemporary Mathematics and Its Applications), Vol. 31, Geometry, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smolentsev, N.K. Spaces of Riemannian metrics. J Math Sci 142, 2436–2519 (2007). https://doi.org/10.1007/s10958-007-0185-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-007-0185-3

Keywords

Navigation