Skip to main content

Pseudospherical surfaces and some problems of mathematical physics

Abstract

In the paper, some aspects of the interrelation of Lobachevsky geometry and nonlinear differential equations are discussed.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    E. Beltrami, “Sulla superficie di rotazione che serve di tipo superficie pseudosferiche,” Giorn. Math., 10, No. 2, pp. 12–16 (1872).

    Google Scholar 

  2. 2.

    L. Bianchi, Lezioni di Geometria Differenziale, Bologna (1927).

  3. 3.

    P. L. Chebyshev, “Über den Schnitt von Bekleidungen,” Usp. Mat. Nauk, 1, No. 2, pp. 38–42 (1946).

    Google Scholar 

  4. 4.

    S. B. Kadomtsev, E. G. Poznyak, and A. G. Popov, “Lobachevsky geometry: the discovery and the way to the future,” Priroda, 7, 19–27 (1993).

    MathSciNet  Google Scholar 

  5. 5.

    F. Minding, “Über die Biegung krummer Flächen,” J. Reine Angew. Math., 18, pp. 365–368 (1838).

    Google Scholar 

  6. 6.

    E. G. Poznyak, “On the regular realization in the whole of two-dimensional metrics of negative curvature,” Dokl. Akad. Nauk SSSR, 170, No. 4, 786–789 (1966).

    MathSciNet  Google Scholar 

  7. 7.

    E. G. Poznyak and A. G. Popov, The Sine-Gordon Equation: Geometry and Physics [in Russian], Znanie, Moscow (1991).

    MATH  Google Scholar 

  8. 8.

    E. G. Poznyak and A. G. Popov, “Lobachevsky geometry and equations of mathematical physics,” Dokl. Ross. Akad. Nauk, 332, No. 4, 418–421 (1993).

    Google Scholar 

  9. 9.

    E. G. Poznyak and A. G. Popov, “Non-Euclidean geometry: The Gauss formula and an interpretation of partial differential equations,” J. Math. Sci., 78, No. 3, 241–252 (1996).

    Article  MathSciNet  Google Scholar 

  10. 10.

    E. G. Poznyak and E. V. Shikin, Differential Geometry [in Russian], Moscow State Univ., Moscow (1990).

    MATH  Google Scholar 

  11. 11.

    E. R. Rozendorn, “Surfaces of negative curvature,” in: Itogi Nauki Tekhn. Sovr. Probl. Mat., 48, All-Union Institute for Scientific and Technical Information, Moscow (1989), pp. 98–195.

    Google Scholar 

  12. 12.

    B. L. Rozhdestvensky, “System of quasi-linear equations of the surface theory,” Dokl. Akad. Nauk SSSR, 143, No. 1, 132–135 (1962).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Additional information

__________

Translated from Fundamental’naya i Prikladnaya Matematika (Fundamental and Applied Mathematics), Vol. 11, No. 1, Geometry, 2005.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Popov, A.G. Pseudospherical surfaces and some problems of mathematical physics. J Math Sci 141, 1062–1070 (2007). https://doi.org/10.1007/s10958-007-0033-5

Download citation

Keywords

  • Soliton
  • Euclidean Geometry
  • Isometric Immersion
  • Modern Mathematical Physic
  • Inverse Scattering Method