Skip to main content

On W-geometry of Toda systems

Abstract

We describe W-geometry of two-dimensional Toda systems associated with the Lie algebra C n .

This is a preview of subscription content, access via your institution.

References

  1. 1.

    V. G. Drinfeld and V. V. Sokolov, “Lie algebras and equations of Korteweg-de Vries type,” J. Sov. Math., 30, 1975–2005 (1984).

    Article  Google Scholar 

  2. 2.

    J. Gervais and Y. Matsuo, “Classical A n -W-geometry,” Commun. Math. Phys., 152, 317–368 (1993).

    Article  MathSciNet  Google Scholar 

  3. 3.

    J. Gervais and Y. Matsuo, “W-geometries,” Phys. Lett., B274, 309–316 (1992).

    MathSciNet  Google Scholar 

  4. 4.

    J.-L. Gervais and M. V. Saveliev, “W-geometry of the Toda systems associated with non-exceptional Lie algebras,” Commun. Math. Phys., 180, No. 2, 265–296 (1996).

    Article  MathSciNet  Google Scholar 

  5. 5.

    M. Goto and F. Grosshans, Semisimple Lie Algebras, Marcel Dekker, New York (1978).

    MATH  Google Scholar 

  6. 6.

    A. N. Leznov and M. V. Saveliev, Group-Theoretical Methods for Integration of Nonlinear Dynamical Systems, Birkhäuser, Basel (1992).

    MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Additional information

__________

Translated from Fundamental’naya i Prikladnaya Matematika (Fundamental and Applied Mathematics), Vol. 11, No. 1, Geometry, 2005.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Il’in, O.V. On W-geometry of Toda systems. J Math Sci 141, 1041–1047 (2007). https://doi.org/10.1007/s10958-007-0030-8

Download citation

Keywords

  • Arbitrary Function
  • Similar Relation
  • Nonlinear Dynamical System
  • Reduction Procedure
  • Dimensional Euclidean Space