Skip to main content

Sets of Hilbert series and their applications

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.


We consider graded finitely presented algebras and modules over a field. Under some restrictions, the set of Hilbert series of such algebras (or modules) becomes finite. Claims of that type imply the rationality of Hilbert and Poincaré series of some algebras and modules, including the periodicity of Hilbert functions of many (e.g., Noetherian) modules and algebras of linear growth.

This is a preview of subscription content, access via your institution.


  1. 1.

    D. Anick, “Generic algebras and CW-complexes,” in: Proc. of 1983 Conf. on Algebra, Topology and K-theory in Honor of John Moore, Princeton Univ. (1988), pp. 247–331.

  2. 2.

    M. Artin, L. W. Small, and J. J. Zhang, “Generic flatness for strongly Noetherian algebras,” J. Algebra, 221, No. 2, 579–610 (1999).

    MATH  MathSciNet  Article  Google Scholar 

  3. 3.

    J. Backelin, “On the rates of growth of the homologies of Veronese subrings,” in: Lecture Notes Math., Vol. 1183, 1986, pp. 79–100.

    MATH  MathSciNet  Article  Google Scholar 

  4. 4.

    S. Blum, “Initially Koszul algebras,” Beitr. Algebra Geom., 41, No. 2, 455–467 (2000).

    MATH  MathSciNet  Google Scholar 

  5. 5.

    N. Bourbaki, Algèbre, Ch. 10. Algèbre homologique, Masson, Paris-NY-Barcelona-Milan (1980).

    Google Scholar 

  6. 6.

    A. Conca, “Universally Koszul algebras,” Math. Ann., 317, No. 2, 329–346 (2000).

    MATH  MathSciNet  Article  Google Scholar 

  7. 7.

    A. Conca, “Universally Koszul algebras defined by monomials,” Rend. Sem. Mat. Univ. Padova, 107, 1–5 (2002).

    MathSciNet  Google Scholar 

  8. 8.

    A. Conca, E. de Negri, and M. E. Rossi, “On the rate of points in projective spaces,” Israel J. Math., 124, 253–265 (2001).

    MATH  MathSciNet  Google Scholar 

  9. 9.

    A. Conca, M. E. Rossi, and G. Valla, “Gröbner flags and Gorenstein algebras,” Compositio Math., 129, 95–121 (2001).

    MATH  MathSciNet  Article  Google Scholar 

  10. 10.

    A. Conca, N. V. Trung, and G. Valla, “Koszul property for points in projective spaces,” Math. Scand., 89, No. 2, 201–216 (2001).

    MATH  MathSciNet  Google Scholar 

  11. 11.

    K. Faith, Algebra: Rings, Modules, and Categories. Vol. I, Corrected reprint. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Vol. 190, Springer, Berlin-New York (1981).

    Google Scholar 

  12. 12.

    M. Lorenz, “On Gelfand-Kirillov dimension and related topics,” J. Algebra, 118, No. 2, 423–437 (1988).

    MATH  MathSciNet  Article  Google Scholar 

  13. 13.

    D. Piontkovski, “Koszul algebras and their ideals,” Funkts. Anal. Prilozhen., to appear; an extended version is available as Noncommutative Koszul Filtrations, preprint math.RA/0301233.

  14. 14.

    D. Piontkovski, “Linear equations over noncommutative graded rings,” J. Algebra, to appear; preprint math.RA/0404419 (2004).

  15. 15.

    A. Polishchuk, Koszul Configurations of Points in Projective Spaces, preprint math.AG/0412441 (2004).

  16. 16.

    A. Polishchuk and L. Positselski, Quadratic Algebras, preprint (1994–2000).

  17. 17.

    L. W. Small, J. T. Stafford, and R. B. Warfield (Jr.), “Affine algebras of Gelfand-Kirillov dimension one are PI,” Math. Proc. Cambridge Philos. Soc., 97, No. 3, 407–414 (1985).

    MATH  MathSciNet  Article  Google Scholar 

Download references

Author information



Additional information


Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 10, No. 3, pp. 143–156, 2004.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Piontkovski, D.I. Sets of Hilbert series and their applications. J Math Sci 139, 6753–6761 (2006).

Download citation


  • Projective Space
  • Hilbert Series
  • Hilbert Function
  • Free Resolution
  • Grade Vector Space