Skip to main content

Weakly primitive superrings

Abstract

Some results concerning compressible modules, primitive rings, and weakly primitive rings are obtained. Properties of analogous objects in the supercase are considered. The main result is the extended density theorem for superrings. In addition, rings and modules graded by a group are studied.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    S. A. Amitsur, “Rings of quotients and Morita context,” J. Algebra, 17, 273–298 (1971).

    MATH  MathSciNet  Article  Google Scholar 

  2. 2.

    I. N. Balaba, S. V. Limarenko, A. V. Mikhalev, and S. V. Zelenov, “Density theorems for graded rings,” Fund. Prikl. Mat., 9, No. 1, 27–49 (2003).

    MATH  Google Scholar 

  3. 3.

    K. I. Beidar, W. S. Martindale III, and A. V. Mikhalev, Rings with Generalized Identities, Marcel Dekker, New York (1996).

    MATH  Google Scholar 

  4. 4.

    C. Faith, Lectures on Injective Modules and Quotient Rings, Springer, Berlin (1967), Lect. Notes Math., Vol. 49.

    MATH  Google Scholar 

  5. 5.

    N. Jacobson, Structure of Rings, Amer. Math. Soc., Providence, RI (1956), Amer. Math. Soc. Colloq. Publ., Vol. 37.

    MATH  Google Scholar 

  6. 6.

    S. V. Limarenko, “Extended density theorem for rings and modules graded by a group,” Russian Math. Surveys, 57, No. 4, 811–812 (2002).

    MATH  MathSciNet  Article  Google Scholar 

  7. 7.

    S. V. Limarenko, “Rings with critically compressible ideals,” Russian Math. Surveys, 58, No. 2, 375–376 (2003).

    MATH  MathSciNet  Article  Google Scholar 

  8. 8.

    S. V. Limarenko, “Compressible modules,” Vestn. Moskov. Univ. Ser. 1 Mat. Mekh., No. 3 (2005), to appear.

  9. 9.

    C. Nǎstǎsescu and F. V. Oystayen, Graded and Filtered Rings and Modules, Springer, Berlin (1979), Lect. Notes Math., Vol. 758.

    Google Scholar 

  10. 10.

    M. L. Racine, “Primitive superalgebras with superinvolution,” J. Algebra, 206, 588–614 (1998).

    MATH  MathSciNet  Article  Google Scholar 

  11. 11.

    S. V. Zelenov, “The Zelmanowitz density theorem in the graded case,” Russian Math. Surveys, 56, No. 3, 599–600 (2001).

    MATH  MathSciNet  Article  Google Scholar 

  12. 12.

    J. Zelmanowitz, “An extension of the Jacobson density theorem,” Bull. Amer. Math. Soc., 1976, 82, No. 4, 551–553 (1976).

    MATH  MathSciNet  Article  Google Scholar 

  13. 13.

    J. Zelmanowitz, “Weakly primitive rings,” Comm. Algebra, 9, No. 1, 23–45 (1981).

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Affiliations

Authors

Additional information

__________

Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 10, No. 3, pp. 97–142, 2004.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Limarenko, S.V. Weakly primitive superrings. J Math Sci 139, 6723–6752 (2006). https://doi.org/10.1007/s10958-006-0387-0

Download citation

Keywords

  • Division Ring
  • Density Theorem
  • Weyl Algebra
  • Compressible Module
  • Injective Hull