Abstract
Consider an affine Bruhat-Tits building Lat n of type Anβ1 and the complex distance in Lat n, i.e., the complete system of invariants of a pair of vertices of the building. An element of the Nazarov semigroup is a lattice in the duplicated p-adic space β np β β np . We investigate the behavior of the complex distance with respect to the natural action of the Nazarov semigroup on the building. Bibliography: 18 titles.
Article PDF
References
K. Brown, Buildings, Springer-Verlag, New York (1989).
W. Fulton, βEigenvalues of sums of Hermitian matrices (after A. Klyachko),β Asterisque, No. 252, Exp. No. 845, 5, 255β269 (1998).
P. Garrett, Buildings and Classical Groups, Chapman & Hall, London (1997).
Y. Guivarch, L. Ji, and J. Taylor, Compacti.cations of Symmetric Spaces, Birkhauser Boston, Boston (1998).
Kh. Koufany, βContractions of angles in symmetric cones,β Publ. Res. Inst. Math. Sci., 38, No. 2, 227β243 (2002).
V. B. Lidskii, βInequalities for eigenvalues and singular values,β Addendum to the book F. R. Gantmaher, Theory of Matrices, 2nd (1966), 3rd (1976), 4th (1988) Russian editions.
I. G. Macdonald, Spherical Functions on a Group of p-Adic Type, Publ. Ramanujan Inst., Madras (1971).
I. G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd edition, Clarendon Press, Oxford (1995).
M. L. Nazarov, βThe oscillator semigroup over nonarchimedian field,β J. Funct. Anal., 128, 384β438 (1995).
V. Nazarov, Yu. Neretin, and G. Olshanski, βSemi-groupes engendrΓ©s par la reprΓ© sentation de Weil du groupe symplectique de dimension infinie,β C. R. Acad. Sci. Paris SΓ©r. I Math., 309, No. 7, 443β446 (1989).
Yu. Neretin, βOn a semigroup of operators in the boson Fock space,β Funct. Anal. Appl., 24, No. 2, 135β144 (1990).
Yu. Neretin, Categories of Symmetries and In.nite-Dimensional Groups, The Clarendon Press. Oxford University Press, New York (1996).
Yu. A. Neretin, βHinges and the Study-Semple-Satake-Furstenberg-De Concini-Procesi-Oshima boundary, β in: Kirillovβs Seminar on Representation Theory, Amer. Math. Soc. Transl. Ser. 2, 181, Amer. Math. Soc., Providence, Rhode Island (1998), pp. 165β230.
Yu. A. Neretin, βConformal geometry of symmetric spaces, and generalized linear-fractional Krein-Shmulian mappings,β Sb. Math., 190, No. 1β2, 255β283 (1999).
Yu. A. Neretin, βJordan angles and triangle inequality in Grassmannian manifold,β Geometria Dedicata, 86, 403β432 (2001).
Yu. A. Neretin, βThe Beta function of the Bruhat-Tits building and the deformation of the space L 2 on the set of p-adic lattices,β Sb. Math., 194, No. 11β12, 1775β1805 (2003).
A. Weil, βSur certains groupes dβoperateurs unitaires,β Acta Math., 111, 143β211 (1964).
A. Weil, Basic Number Theory, Springer-Verlag, New York (1967).
Author information
Authors and Affiliations
Additional information
__________
Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 325, 2005, pp. 163β170.
Rights and permissions
About this article
Cite this article
Neretin, Y.A. On compression of Bruhat-Tits buildings. J Math Sci 138, 5722β5726 (2006). https://doi.org/10.1007/s10958-006-0340-2
Received:
Issue Date:
DOI: https://doi.org/10.1007/s10958-006-0340-2