Skip to main content

Null Lagrangians for nematic elastomers

Abstract

In this paper, we calculate all possible null Lagrangians (null energies) for the mechanics of a distinguished class of continua, the nematic elastomers. The calculation is done in order to help to relate different physically equivalent theories of nematic elastomers. We discuss both local and global (hence topological) aspects of the problem.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    I. M. Anderson and T. Duchamp, “On the existence of global variational principles,” Amer. Math. J., 102, 781–868 (1980).

    MathSciNet  Google Scholar 

  2. 2.

    D. R. Anderson, D. E. Carlson, E. Fried, “A continuum-mechanical theory for nematic elastomers,” J. Elasticity, 56, 35–58 (1999).

    MathSciNet  Article  Google Scholar 

  3. 3.

    A. V. Bocharov et al., Symmetries and Conservation Laws for Differential Equations of Mathematical Physics (I. S. Krasil’shchik and A. M. Vinogradov, Eds.), Amer. Math. Soc. (1999).

  4. 4.

    R. Bott and L. W. Tu, Differential Forms in Algebraic Topology, Grad. Texts Math., 82, Springer-Verlag, Berlin (1982).

    Google Scholar 

  5. 5.

    J. L. Ericksen, “Conservation laws for liquid crystals,” Trans. Soc. Rheol., 5, 23–34 (1961).

    MathSciNet  Article  Google Scholar 

  6. 6.

    J. L. Ericksen, “Nilpotent energies in liquid crystal theories,” Arch. Rational Mech. Anal., 10, 189–196 (1962).

    MATH  MathSciNet  Article  Google Scholar 

  7. 7.

    E. Fried and S. Sellers, “Free energy-density functions for nematic elastomers,” J. Mech. Phys. Solids, 52, 1671–1689 (2004).

    MathSciNet  Article  Google Scholar 

  8. 8.

    D. R. Grigore, “Variationally trivial Lagrangians and locally variational differential equations of arbitrary order,” Differ. Geom. Appl., 10, 79–105 (1999).

    MATH  MathSciNet  Article  Google Scholar 

  9. 9.

    D. Krupka, “Variational sequences on finite-order jet spaces,” in: Proc. Conf. on Differential Geometry and Its Appl., World Scientific, New York (1990), pp. 236–254.

    Google Scholar 

  10. 10.

    D. Krupka and J. Musilova, “Trivial Lagrangians in field theory,” Differ. Geom. Appl., 9, 293–505 (1998).

    MathSciNet  Article  Google Scholar 

  11. 11.

    F. M. Leslie, “Some constitutive equations for liquid crystals,” Arch. Rational Mech. Anal., 28, 265–283 (1968).

    MATH  Article  Google Scholar 

  12. 12.

    F. M. Leslie, I. W. Stewart, T. Carlsson and M. Nakagawa, “Equivalent smectic C liquid crystal energies,” Contin. Mech. Thermodyn., 3, 237–250 (1991).

    MathSciNet  Article  Google Scholar 

  13. 13.

    P. J. Olver, Applications of Lie Groups to Differential Equations, Grad. Texts Math., 107, Springer-Verlag (1986).

  14. 14.

    P. J. Olver and J. Sivaloganathan, “The structure of null Lagrangians,” Nonlinearity, 1, 389–398 (1988).

    MathSciNet  Article  Google Scholar 

  15. 15.

    M. Palese, R. Vitolo, E. Winterroth, “Minimal order problems in the calculus of variations,” in preparation.

  16. 16.

    D. J. Saunders, The Geometry of Jet Bundles, Cambridge Univ. Press (1989).

  17. 17.

    E. M. Terentjev, “Liquid-cristalline elastomers,” J. Phys. Condensed Matter, 11, R239–R257 (1999).

    Article  Google Scholar 

  18. 18.

    W. M. Tulczyjew, “The Lagrange complex,” Bull. Soc. Math. France, 105, 419–431 (1977).

    MATH  MathSciNet  Google Scholar 

  19. 19.

    A. M. Vinogradov, “The C-spectral sequence, Lagrangian formalism and conservation laws, I, II,” J. Math. Anal. Appl., 100 (1984).

  20. 20.

    E. Virga, Variational Theories for Liquid Crystals, Appl. Math. and Math. Comput., 8, Chapman & Hall (1994).

  21. 21.

    R. Vitolo, “On different geometric formulations of Lagrangian formalism,” Differ. Geom. Appl., 10, 225–255 (1999).

    MATH  MathSciNet  Article  Google Scholar 

  22. 22.

    R. Vitolo, “The finite-order C-spectral sequence,” Acta Appl. Math., 72, 133–154 (2002).

    MATH  MathSciNet  Article  Google Scholar 

  23. 23.

    M. Warner and E. M. Terentjev, “Nematic elastomers—a new state of matter?” Progr. Polym. Sci., 21, 853–891 (1996).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Additional information

__________

Translated from Fundamental’naya i Prikladnaya Matematika (Fundamental and Applied Mathematics), Vol. 10, No. 1, Geometry of Integrable Models, 2004.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Saccomandi, G., Vitolo, R. Null Lagrangians for nematic elastomers. J Math Sci 136, 4470–4477 (2006). https://doi.org/10.1007/s10958-006-0238-z

Download citation

Keywords

  • Liquid Crystal
  • Lagrangian Density
  • Total Space
  • Material Space
  • Coordinate Expression