Skip to main content

Exotic Galileian group in field theory

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The exotic Galileian group is realized as a symmetry group of a family of nonrelativistic field theories on the noncommutative plane. This was obtained in a unique way consistent with the Seiberg—Witten mapping. The symmetry group of the free model is analyzed and a characterization of the class of the self-interacting theories is given.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    J.-M. Lévy-Leblond, “Galilei group and Galilean invariance,” in: Group Theory and Applications, II, Academic Press, New York (1972), p. 222.

    Google Scholar 

  2. 2.

    A. Ballesteros, N. Gadella, and M. del Olmo, J. Math. Phys., 33, 3379 (1992).

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Y. Brihaye, C. Gonera, S. Giller, and P. Kosiński, Preprint hep-th/9503046.

  4. 4.

    D. R. Grigore, J. Math. Phys., 37, 240 (1996).

    MATH  MathSciNet  Article  Google Scholar 

  5. 5.

    D. R. Grigore, J. Math. Phys., 37, 460 (1996).

    MATH  MathSciNet  Article  Google Scholar 

  6. 6.

    J. Lukierski, P. C. Stichel, and W. J. Zakrzewski, Ann. Phys. (N.Y.), 260, 224 (1997).

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    J. Lukierski, P. C. Stichel, and W. J. Zakrzewski, Preprint hep-th/0207149.

  8. 8.

    R. J. Szabo, “Quantum field theory on noncommutative spaces,” Phys. Rep., 378, 203 (2003).

    Article  Google Scholar 

  9. 9.

    R. J. Szabo, Preprint hep-th/0109162.

  10. 10.

    D. Bak, S. K. Kim, K.-S. Soh, and J. H. Yee, “Exact wave functions in a noncommutative field theory,” Phys. Rev. Lett., 85, 3087 (2000).

    MathSciNet  Article  Google Scholar 

  11. 11.

    P. A. Horváthy, L. Martina and P. C. Stichel, “Galilean symmetry in noncommutative field theory,” Phys. Lett. B564, 149 (2003).

    Google Scholar 

  12. 12.

    P. A. Horváthy, L. Martina and P. C. Stichel, “Galilean noncommutative gauge theory: symmetries and vortices,” Nucl. Phys., B673, 301–318 (2003).

    Article  Google Scholar 

  13. 13.

    P. A. Horváthy and P. C. Stichel, “Moving vortices in noncommutative gauge theory,” Phys. Lett., B583, 353–356 (2004).

    Google Scholar 

  14. 14.

    G. S. Lozano, E. F. Moreno, and F. A. Schaposnik, “Self-dual Chern—Simons solitons in noncommutative spaces,” J. High Energy Phys., 2, 36 (2001).

    MathSciNet  Article  Google Scholar 

  15. 15.

    D. Bak, S. K. Kim, K.-S. Soh, and J. H. Yee, “Noncommutative Chern—Simons solitons,” Phys. Rev., D64 (2001).

  16. 16.

    D. Bak, K. Lee, and J.-H. Park, “Chern—Simons theories on the noncommutative plane,” Phys. Rev. Lett., 87 (2001).

  17. 17.

    R. Jackiw, Phys. Today, 25, 23 (1980).

    Article  Google Scholar 

  18. 18.

    U. Niederer, Helvet. Phys. Acta, 45, 802 (1972).

    MathSciNet  Google Scholar 

  19. 19.

    C. R. Hagen, Phys. Rev., D5, 377 (1972).

    Google Scholar 

  20. 20.

    E. Langmann and R. J. Szabo, Phys. Lett., B533, 168 (2002).

    MathSciNet  Google Scholar 

  21. 21.

    E. Langmann, Nucl. Phys., B654, 404 (2003).

    MathSciNet  Article  Google Scholar 

  22. 22.

    E. Langmann, R. J. Szabo, and K. Zarembo, Preprint hep-th/0308082.

  23. 23.

    N. Seiberg and E. Witten, “String theory and noncommutative geometry,” J. High Energy Phys., 09, 32 (1999).

    MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Additional information

__________

Translated from Fundamental’naya i Prikladnaya Matematika (Fundamental and Applied Mathematics), Vol. 10, No. 1, Geometry of Integrable Models, 2004.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Martina, L. Exotic Galileian group in field theory. J Math Sci 136, 4465–4469 (2006). https://doi.org/10.1007/s10958-006-0237-0

Download citation

Keywords

  • Poisson Bracket
  • Central Extension
  • Noncommutative Space
  • Weyl Quantization
  • Galilei Group