Skip to main content

Imaginary-quadratic solutions of anti-Vandermonde systems in 4 unknowns and the Galois orbits of trees of diameter 4

Abstract

The paper is devoted to an elementary Diophantine problem motivated by Grothendieck’s dessins d’enfants theory. Namely, we consider the system of equations ax j + by j + cz j + dt j = 0 (j = 1, 2, 3) with natural a, b, c, and d. For trivial reasons it has no real (hence rational) nonzero solutions; we study the cases where it has imaginary quadratic ones. We suggest an infinite family of such cases covering all the imaginary quadratic fields. We discuss this result from the viewpoint of the Galois orbits of trees of diameter 4.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    N. M. Adrianov, Yu. Yu. Kochetkov, A. D. Suvorov, and G. B. Shabat, “Mathieu groups and plane trees,” Fund. Prikl. Mat., 1995, 1, No. 2, 377–384 (1995).

    MathSciNet  Google Scholar 

  2. 2.

    A. Grothendieck, “Esquisse d’un programme,” in: Geometric Galois Actions, Cambridge Univ. Press (1977), London Math. Society, Lecture Notes Series, Vol. 243, pp. 3–43.

  3. 3.

    Yu. Kochetkov, private communication (1995).

  4. 4.

    Yu. Kochetkov, private communication (1996).

  5. 5.

    Yu. Kochetkov, “Trees of diameter 4,” in: D. Krob, A. A. Mikhalev, and A. V. Mikhalev, eds., Proceedings of the 12th International Conference, FPSAC’00 (Formal Power Series and Algebraic Combinatorics), Springer (2000), pp. 447–475.

  6. 6.

    L. Schneps, “Dessins d’enfants on the Riemann sphere,” in: L. Schneps, ed., The Grothendieck Theory of Dessins d’Enfants, Cambridge Univ. Press (1944), London Math. Society, Lecture Notes Series, Vol. 200, pp. 47–98.

  7. 7.

    L. Schneps, ed., The Grothendieck Theory of Dessins d’Enfants, Cambridge Univ. Press (1944), London Math. Society, Lecture Notes Series, Vol. 200.

  8. 8.

    G. Shabat and V. Voevodsky, “Drawing curves over number fields,” in: The Grothendieck Festschrift, Vol. 3, Birkhäuser (1990), pp. 199–227.

    MathSciNet  Google Scholar 

  9. 9.

    G. Shabat and A. Zvonkin, “Plane trees and algebraic numbers,” in: Jerusalem Combinatorics ’93, Contemporary Mathematics, Amer. Math. Soc., Vol. 178, 1994, pp. 233–275.

  10. 10.

    L. Zapponi, “Fleurs, arbres et cellules: un invariant galoisien pour une famille d’arbres,” Compositio Math., 122, 113–133 (2000).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Affiliations

Authors

Additional information

__________

Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 9, No. 3, pp. 229–236, 2003.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shabat, G.B. Imaginary-quadratic solutions of anti-Vandermonde systems in 4 unknowns and the Galois orbits of trees of diameter 4. J Math Sci 135, 3420–3424 (2006). https://doi.org/10.1007/s10958-006-0171-1

Download citation

Keywords

  • Nonzero Solution
  • Infinite Family
  • Quadratic Field
  • Imaginary Quadratic Field
  • Trivial Reason