Skip to main content

Automated proving and analysis of geometric theorems in coordinate-free form by using the anticommutative Gröbner basis method


Some geometric theorems can be stated in coordinate-free form as polynomials in Grassman algebra and can be proven by the anticommutative Gröbner basis method. In this article, we analyze some properties of both sets of hypotheses and conclusions of the theorem.

This is a preview of subscription content, access via your institution.


  1. 1.

    F. A. Beresin, The Method of Secondary Quantization [in Russian], NFMI (2000)

  2. 2.

    F. A. Beresin, Introduction to Algebra and Analysis with Anticommutative Variables [in Russian], Izd. Mosk. Univ., Moscow (1983).

    Google Scholar 

  3. 3.

    B. Buchberger, “Gröbner bases: An algorithmic method in polynomial ideal theory,” in: N. K. Bose, ed., Recent Trends in Multidimensional System Theory, Reidel (1985).

  4. 4.

    S.-C. Chou, Mechanical Geometry Theorem Proving. Mathematics and Its Applications, D. Reidel, Dordrecht (1987).

    Google Scholar 

  5. 5.

    S.-C. Chou, X.-S. Gao, and J.-Z. Zhang, “Automated geometry theorem proving by vector calculation,” in: M. Bronstein, ed., Proc. ISSAC ’93, ACM Press (1993), pp. 284–291.

  6. 6.

    D. Cox, J. Little, and D. O’Shea, Using Algebraic Geometry, Springer, New York (1998).

    MATH  Google Scholar 

  7. 7.

    D. Cox, J. Little, and D. O’Shea, Ideals, Varieties, and Algorithms. An Introduction to Computational Algebraic Geometry and Commutative Algebra, 2nd edition, Springer, New York (1998).

    Google Scholar 

  8. 8.

    D. Eisenbud, I. Peeva, and B. Sturmfels, “Noncommutative Grobner bases for commutative ideals,” Proc. Amer. Math. Soc., 126, No. 3, 687–691 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  9. 9.

    Y. El From, Sur les Algèbres de Type Résoluble, Thèse de 3e cycle, Univ. Paris 6 (1983).

  10. 10.

    D. Hartley and P. Tuckey, “Gröbner bases in Clifford and Grassman algebras,” J. Symbolic Comput., 20, No. 2, 197–205 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  11. 11.

    A. Kandry-Rody and V. Weispfenning, “Non-commutative Gröbner bases in algebras of solvable type,” J. Symbolic Comput., 9, 1–26 (1990).

    MathSciNet  Article  Google Scholar 

  12. 12.

    F. Mora, “Gröebner bases for non-commutative polynomial rings,” in: Proc. AAECC-5, Springer LNCS, Vol. 229 (1986), pp. 353–362.

  13. 13.

    T. Mora, “Gröbner bases in noncommutative algebras,” in: Proc. ISSAC’88, Springer LNCS, Vol. 358 (1989), pp. 150–161.

  14. 14.

    T. Mora, “An introduction to commutative and noncommutative Gröbner bases,” Theoret. Comput. Sci., 134, 131–173 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  15. 15.

    S. Stifter, “Geometry theorem proving in vector spaces by means of Gröbner bases,” in: M. Bronstein, ed., Proc. ISSAC ’93, ACM Press (1993), pp. 301–310.

  16. 16.

    I. J. Tchoupaeva, “Application of methods of noncommutative Gröbner bases to the proof of geometrical statements given in noncoordinate form,” in: Proc. International Workshop on Computer Algebra and Its Application to Physics, Dubna (2001).

  17. 17.

    I. J. Tchoupaeva, “Application of the noncommutative Gröbner bases method for proving geometric statements in coordinate free form,” in: Proc. Workshop on Under-and Overdetermined Systems of Algebraic or Differential Equation, Karlsruhe (2002).

  18. 18.

    V. Ufnarovski, “Introduction to noncommutative Gröbner bases theory,” Proc. London Math. Soc., 251, 259–280 (1998).

    MATH  MathSciNet  Google Scholar 

  19. 19.

    V. W. Vasconcelos, Computational Methods in Commutative Algebra and Algebraic Geometry, Springer (1998).

  20. 20.

    E. B. Vinberg, A Course in Algebra [in Russian], Factorial Press, Moscow (2002).

    Google Scholar 

  21. 21.

    D. Wang, “Gröbner bases applied to geometric theorem proving and discovering,” in: B. Buchberger and F. Winkler, eds., Gröbner Bases and Applications, Cambridge Univ. Press (1998), pp. 281–302.

Download references

Author information



Additional information


Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 9, No. 3, pp. 213–228, 2003.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tchoupaeva, I.J. Automated proving and analysis of geometric theorems in coordinate-free form by using the anticommutative Gröbner basis method. J Math Sci 135, 3409–3419 (2006).

Download citation


  • Basis Method
  • Geometric Theorem
  • Automate Prove