Skip to main content

Isoperimetric functions and embeddings of groups


In this article, we show that the embedding of groups almost preserves isoperimetric functions. More precisely, if G is a known isoperimetric function group, then there exists an embedding of G into a two-generated group H such that the isoperimetric functions of the groups G and H are equivalent.

This is a preview of subscription content, access via your institution.


  1. 1.

    S. G. Brick, “Dehn functions and products of groups,” Trans. Amer. Math. Soc., 335, No. 1, 369–384 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  2. 2.

    S. M. Gersten, “Isoperimetric and isodiametric functions of finite presentations,” in: Geometric Group Theory, Vol. 1, London Math. Soc. Lecture Note Ser., Vol. 181, 1993, pp. 79–96.

    MATH  MathSciNet  Google Scholar 

  3. 3.

    M. Gromov, “Hyperbolic groups,” in: Essays in Group Theory, Vol. 8, Springer (1987), pp. 75–263.

    MATH  MathSciNet  Google Scholar 

  4. 4.

    V. S. Guba and M. V. Sapir, “On Dehn functions of free products of groups,” Proc. Amer. Math. Soc., 127, No. 7, 1885–1891 (1999).

    Article  MathSciNet  Google Scholar 

  5. 5.

    R. Lyndon and P. Schupp, Combinatorial Group Theory, Springer (1977).

  6. 6.

    A. Yu. Olshanskii, Geometry of Defining Relations in Groups, Kluwer Academic, Dordrecht (1991).

    Google Scholar 

  7. 7.

    A. Yu. Olshanskii, “SQ-universality of hyperbolic groups,” Mat. Sb., 186, No. 8, 1199–1211 (1995).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information



Additional information


Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 9, No. 3, pp. 165–173, 2003.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Platonov, A.N. Isoperimetric functions and embeddings of groups. J Math Sci 135, 3377–3383 (2006).

Download citation


  • Function Group
  • Isoperimetric Function