Skip to main content

On the scales of computability potentials of finite algebras: Results and problems

Abstract

We give a review of general known results on problems concerning the structure of scales of computability potentials of n-element algebras. We also formulate a number of natural open problems.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    K. Glazek, “Weak automorphisms in general algebra —a short survey,” Algebra and Model Theory-3, NSTU, Novosibirsk (2001), pp. 26–31.

    Google Scholar 

  2. 2.

    B. Jonsson, Topics in Universal Algebra, Lect. Notes Math., Vol. 250 (1972).

  3. 3.

    R. McKenzie, “An algebraic version of categorical equivalence for varieties and more general algebraic categories,” in: Logic and Algebra, Marcel Dekker, New York (1996), pp. 211–248.

    Google Scholar 

  4. 4.

    A. G. Pinus, “On the conditional terms and identities on universal algebras,” Vychisl. Sistemy, 156, 59–78 (1996).

    MATH  MathSciNet  Google Scholar 

  5. 5.

    A. G. Pinus, “The calculus of conditional identities and conditionally rational equivalency,” Algebra Logika, 37, No. 4, 432–459 (1998).

    MATH  MathSciNet  Google Scholar 

  6. 6.

    A. G. Pinus, “On the conditionally rationally equivalent algebras,” Vychisl. Sistemy, 165, 1–29 (1999).

    MathSciNet  Google Scholar 

  7. 7.

    A. G. Pinus, “Conditional terms and their applications,” in: Algebra, Proc. of the Kurosh Conference, Walter de Gruyter, Berlin-New York (2000), pp. 291–300.

    Google Scholar 

  8. 8.

    A. G. Pinus, “On the functions commuting with the semigroups of algebra transformations,” Sib. Mat. Zh., 41, No. 6, 1409–1418 (2000).

    MATH  MathSciNet  Google Scholar 

  9. 9.

    A. G. Pinus, “Conditional terms and their application to algebra and theory of computations,” Usp. Mat. Nauk, 56, No. 4, 37–72 (2001).

    MathSciNet  Google Scholar 

  10. 10.

    A. G. Pinus, “Inner homomorphisms and positive conditional terms,” Algebra Logika, 40, No. 2, 158–173 (2001).

    MATH  MathSciNet  Google Scholar 

  11. 11.

    A. G. Pinus, “Inner isomorphisms and conditional rational equivalency to fields and unars,” Algebra and Model Theory-3 [in Russian], NSTU, Novosibirsk (2001), pp. 123–130.

    Google Scholar 

  12. 12.

    A. G. Pinus, “Program-computable functions on universal algebras,” Mat. Voprosy Kibernet., 10, 235–244 (2001).

    Google Scholar 

  13. 13.

    A. G. Pinus, Conditional Terms and Their Application to Algebra and the Theory of Computations [in Russian], NSTU, Novosibirsk (2002).

    Google Scholar 

  14. 14.

    A. G. Pinus, “Weak automorphisms and thickness of the points of the scales of computability potentials,” Mat. Voprosy Kibernet., 11, 15–26 (2002).

    Google Scholar 

  15. 15.

    A. G. Pinus, “Generation of the finite algebras, its conditionally equational theories, and the scale of computability potentials of n-element algebras,” Algebra and Model Theory-4. To appear.

  16. 16.

    A. G. Pinus, “The scales of computability potentials of n-element algebras with arity limitations.” To appear.

  17. 17.

    A. G. Pinus and S. V. Zhurkov, “Some remarks on the scales of computability potentials of n-element algebras,” Algebra and Model Theory-3 [in Russian], NSTU, Novosibirsk (2001), pp. 107–113.

    Google Scholar 

  18. 18.

    A. G. Pinus and S. V. Zhurkov, “On the length of the scales of computability potentials of n-element algebras,” Sib. Mat. Zh., 43, No. 4, 858–863 (2002).

    MathSciNet  Google Scholar 

  19. 19.

    A. G. Pinus and S. V. Zhurkov, “On the scales of computability potentials of universal algebras, ” Vychisl. Sistemy, 169, 26–38 (2002).

    MathSciNet  Google Scholar 

  20. 20.

    E. Post, “The two-valued iterative systems of mathematical logic,” Ann. Math. Studies, No. 5 (1941).

  21. 21.

    M. G. Stone, “Subalgebra and automorphism structure in universal algebras; a concrete characterization,” Acta. Sci. Math. (1973).

  22. 22.

    Yu. I. Yanov and A. A. Muchnik, “On the existence of k-valued closed classes that do not have a finite basis,” Dokl. Akad. Nauk SSSR, 127, No. 1, 144–146 (1959).

    Google Scholar 

  23. 23.

    S. V. Zhurkov, “On the scales of computability potentials of n-element unars.” To appear.

  24. 24.

    S. V. Zhurkov and A. G. Pinus, “On the automorphisms of the scales of computability potentials of n-element algebras,” Sib. Mat. Zh., 44, No. 3 (2003), 606–621.

    MathSciNet  Google Scholar 

Download references

Authors

Additional information

__________

Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 9, No. 3, pp. 145–164, 2003.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pinus, A.G., Zhurkov, S.V. On the scales of computability potentials of finite algebras: Results and problems. J Math Sci 135, 3363–3376 (2006). https://doi.org/10.1007/s10958-006-0166-y

Download citation

Keywords

  • Open Problem
  • Finite Algebra
  • Computability Potential