Skip to main content

The central closure of the simple “strange” lie superalgebras extended over a commutative algebra

Abstract

In this work we study central extensions of Lie superalgebras g(A), where g = P(n − 1) are simple Lie superalgebras from one of the so-called “strange” series. We show that universal central extensions of these Lie superalgebras ara trivial, i.e., they are isomorphic to the superalgebras g(A).

This is a preview of subscription content, access via your institution.

References

  1. 1.

    K. Iohara and Y. Kogti, “Central extensions of Lie superalgebras,” Comment. Math. Helv., 76, 110–154 (2001).

    Article  MathSciNet  Google Scholar 

  2. 2.

    V. G. Kac, “Lie superalgebras,” Adv. Math., 26, No. 1, 8–96 (1977).

    Article  MATH  MathSciNet  Google Scholar 

  3. 3.

    A. V. Mikhalev and I. A. Pinchuk, “The universal central extension of the exceptional Lie superalgebra with the nondegenerate Killing form,” in: Universal Algebra and Its Applications [in Russian], Volgograd (2000), pp. 201–221.

  4. 4.

    A. V. Mikhalev and I. A. Pinchuk, “Universal central extensions of the matrix Lie superalgebras sl(m, n, A),” Contemp. Math., 264, 111–125 (2000).

    MathSciNet  Google Scholar 

  5. 5.

    A. V. Mikhalev and I. A. Pinchuk, “Universal central extensions of Lie superalgebras,” Tr. Sem. Petrovsk., 22, 261–282 (2002).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Additional information

__________

Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 9, No. 3, pp. 125–131, 2003.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mikhalev, A.V., Pinchuk, I.A. The central closure of the simple “strange” lie superalgebras extended over a commutative algebra. J Math Sci 135, 3350–3354 (2006). https://doi.org/10.1007/s10958-006-0164-0

Download citation

Keywords

  • Commutative Algebra
  • Central Extension
  • Central Closure
  • Universal Central Extension