Skip to main content
Log in

Isometries of Privalov spaces of holomorphic functions of several variables

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

Complete descriptions for the sets of linear isometries of the Privalov spaces of holomorphic functions on the sphere and the polydisk are obtained. These results are generalizations, to the many-dimensional case, of those previously obtained by Iida and Mochizuki. Moreover, the general form of surjective linear isometries is established for maximal analogues of the Privalov spaces in the case of positive integer exponents. It is shown that the sets of linear isometries of the Privalov spaces with the natural and the maximal metrics are different, while their groups of surjective linear isometries coincide (in the case of positive integer exponents).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Rudin, Theory of Functions in the Unit Ball in ℂ n [Russian translation], Mir, Moscow (1984).

    Google Scholar 

  2. W. Rudin, Theory of Functions on a Polydisk [Russian translation], Mir, Moscow (1974).

    Google Scholar 

  3. A. V. Subbotin, “Functional properties of Privalov spaces of multi-variable holomorphic functions,” Mat. Zametki, 65, No. 2, 280–288 (1999).

    MATH  MathSciNet  Google Scholar 

  4. A. Zygmund, Trigonometric Series [Russian translation], Vol. 2, Mir, Moscow (1965).

    Google Scholar 

  5. K. Stephenson, “Isometries of the Nevanlinna class,” Indiana Univ. Math. J., 26, No. 2, 307–324 (1977).

    Article  MATH  MathSciNet  Google Scholar 

  6. I. I. Privalov, Boundary Properties of Analytic Functions [In Russian], GITTL, Moscow, Leningrad (1950).

    Google Scholar 

  7. H. O. Kim and Y. Y. Park, “Maximal functions of plurisubharmonic functions,” Tsukuba J. Math., 16, No. 1, 11–18 (1992).

    MathSciNet  Google Scholar 

  8. B. R. Choe and H. O. Kim, “On the boundary behavior of functions holomorphic on the ball,” Complex Variables Theory Appl., 20, 53–61 (1992).

    MathSciNet  Google Scholar 

  9. V. I. Gavrilov and A. V. Subbotin, “F-algebras of holomorphic functions in a ball containing the Nevanlinna class,” Math. Montisnigri, XII, 17–31 (2000).

    MathSciNet  Google Scholar 

  10. Y. Iida and N. Mochizuki, “Isometries of some F-algebras of holomorpic functions,” Arch. Math., 71, 297–300 (1998).

    Article  MathSciNet  Google Scholar 

  11. A. V. Subbotin, “Groups of linear isometries of Privalov spaces of multi-variable holomorphic functions,” Dokl. Ross. Akad. Nauk, 367, No. 4, 451–453 (1999).

    MATH  MathSciNet  Google Scholar 

  12. W. Rudin, “L p-isometries and equimeasurability,” Indiana Univ. Math. J., 25, No. 3, 215–228 (1976).

    Article  MATH  MathSciNet  Google Scholar 

  13. F. Forelli, “The isometries of H p,” Can. J. Math., 16, No. 4, 721–728 (1964).

    MATH  MathSciNet  Google Scholar 

  14. P. R. Ahern and R. Schneider, “Isometries of H ,” Duke Math. J., 42, No. 2, 321–326 (1975).

    Article  MathSciNet  Google Scholar 

  15. L. Schwartz, Analysis [Russian translation], Vol. 1, Mir, Moscow (1972).

    Google Scholar 

Download references

Authors

Additional information

__________

Translated from Trudy Seminara imeni I. G. Petrovskogo, No. 25, pp. 295–309, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Subbotin, A.V. Isometries of Privalov spaces of holomorphic functions of several variables. J Math Sci 135, 2794–2802 (2006). https://doi.org/10.1007/s10958-006-0143-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-006-0143-5

Keywords

Navigation