Skip to main content
Log in

Contact-equivalence problem for linear hyperbolic equations

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

We consider the local equivalence problem for the class of linear second-order hyperbolic equations in two independent variables under an action of the pseudo-group of contact transformations. É. Cartan’s method is used for finding the Maurer-Cartan forms for symmetry groups of equations from the class and computing structure equations and complete sets of differential invariants for these groups. The solution of the equivalence problem is formulated in terms of these differential invariants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. É. Cartan, “Sur la structure des groupes infinis de transformations,” in: Œuvres Complètes, Pt. II, Vol. 2, Gauthier-Villars, Paris (1953), pp. 571–714.

    Google Scholar 

  2. É. Cartan, “Les sous-groupes des groupes continus de transformations,” Œuvres Complètes, Pt. II, Vol. 2, Gauthier-Villars, Paris (1953)ibid., pp. 719–856.

    Google Scholar 

  3. É. Cartan, “Les groupes de transformations continus, infinis, simples,” Œuvres Complètes, Pt. II, Vol. 2, Gauthier-Villars, Paris (1953)ibid., pp. 857–925.

    Google Scholar 

  4. É. Cartan, “La structure des groupes infinis,” Œuvres Complètes, Pt. II, Vol. 2, Gauthier-Villars, Paris (1953)ibid., pp. 1335–1384.

    Google Scholar 

  5. É. Cartan, “Les probl`emes d’équivalence,” Œuvres Complètes, Pt. II, Vol. 2, Gauthier-Villars, Paris (1953)ibid., pp. 1311–1334.

    Google Scholar 

  6. M. Fels and P. J. Olver, “Moving coframes, I. A practical algorithm,” Acta Appl. Math., 51, 161–213 (1998)

    Article  MathSciNet  Google Scholar 

  7. M. Fels and P. J. Olver, “Moving coframes, II. Regularization and theoretical foundations,” Acta Appl. Math., 55, 127–208 (1999).

    Article  MathSciNet  Google Scholar 

  8. R. B. Gardner, The Method of Equivalence and Its Applications, SIAM, Philadelphia (1989).

    Google Scholar 

  9. N. H. Ibragimov, “Infinitesimal method in the theory of invariants of algebraic and differential equations,” Notices South African Math. Soc., 29, 61–70 (1997).

    Google Scholar 

  10. N. H. Ibragimov, Elementary Lie Group Analysis and Ordinary Differential Equations, John Wiley and Sons, New York (1999).

    Google Scholar 

  11. N. H. Ibragimov, “Laplace type invariants for parabolic equations,” Nonlinear Dynam., 28, 125–133 (2002).

    MATH  MathSciNet  Google Scholar 

  12. N. H. Ibragimov, “Invariants of hyperbolic equations: Solution to Laplace’s problem,” Prikl. Mekh. Tekh. Fiz., 45, No. 2, 11–21 (2004).

    MATH  Google Scholar 

  13. I. K. Johnpillai and F. M. Mahomed, “Singular invariant equation for the (1+1) Fokker-Planck equation,” J. Phys. A, 34, 11033–11051 (2001).

    Article  MathSciNet  Google Scholar 

  14. I. K. Johnpillai, F. M. Mahomed, and C. Wafo Soh, “Basis of joint invariants for (1+1) linear hyperbolic equations,” J. Nonlinear Math. Phys., 9, Supplement 2, 49–59 (2002).

    MathSciNet  Google Scholar 

  15. P. S. Laplace, “Recherches sur le calcul intégral aux différences partielles,” Mémoires de l’Académie Royale de Sciences de Paris, 341–401 (1773–1777), reprinted in Œuvres Complètes, IX, Gauthier-Villars, Paris (1893), pp. 3–68. English translation: New York (1966).

  16. S. Lie, Gesammelte Abhandlungen, B. 1–6, BG Teubner, Leipzig (1922–1937).

    Google Scholar 

  17. I. G. Lisle and G. J. Reid, “Geometry and structure of Lie pseudogroups from infinitesimal defining equations,” J. Symbolic Comput., 26 355–379 (1998).

    Article  MathSciNet  Google Scholar 

  18. I. G. Lisle and G. J. Reid, Symmetry Classification Using Invariant Moving Frames, http://www.apmaths.uwo.ca/∼reid (1999).

  19. O. I. Morozov, “Moving coframes and symmetries of differential equations,” J. Phys. A, 35, 2965–2977 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  20. O. I. Morozov, Contact Equivalence Problem for Linear Parabolic Equations, arXiv:math.ph/0304045 (2003).

  21. O. I. Morozov, “Symmetries of differential equations and Cartan’s equivalence method,” in: Proc. Fifth Int. Conf. “Symmetry in Nonlinear Mathematical Physics,” Kyiv, Ukraine, 23–29 June 2003, Pt. 1, pp. 196–203 (2004).

  22. L. V. Ovsiannikov, “Group properties of the Chaplygin equation,” Prikl. Mekh. Tekh. Fiz., No. 3, 126–145 (1960).

  23. L. V. Ovsiannikov, Group Analysis of Differential Equations, Academic Press, New York (1982).

    Google Scholar 

  24. P. J. Olver, Equivalence, Invariants, and Symmetry, Cambridge Univ. Press, Cambridge (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Trudy Seminara imeni I. G. Petrovskogo, No. 25, pp. 119–142, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morozov, O.I. Contact-equivalence problem for linear hyperbolic equations. J Math Sci 135, 2680–2694 (2006). https://doi.org/10.1007/s10958-006-0138-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-006-0138-2

Keywords

Navigation