Skip to main content
Log in

Identification of the Topology of Inhomogeneous Dynamical Systems

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

This paper considers identification problems arising in elasticity theory and methods for their solution; in particular, the impedance and diffraction tomography methods are considered. Some particular problems important in practice are also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Yu. G. Anikonov, Certain Methods for Studying Higher-Dimensional Inverse Problems of Differential Equations [in Russian], SO Nauka, Novosibirsk (1978).

    Google Scholar 

  2. V. A. Babenko, Generalized Factorization Method In Spatial Mixed Problems of Elasticity Theory [in Russian], Nauka, Moscow (1984).

    Google Scholar 

  3. M. B. Vinogradova, O. V. Rudenko, and A. P. Sukhorukov, Wave Theory [in Russian], Nauka, Moscow (1979).

    Google Scholar 

  4. I. M. Gel'fand, M. I. Graev, and V. Ya. Vilenkin. Generalized Functions, Issue 5. Integral Geometry and Related Problems of Representation Theory [in Russian], Fizmatgiz, Moscow (1062).

    Google Scholar 

  5. I. M. Gel'fand, C. G. Gindikin, and M. I. Graev, Selective Problems of Integral Geometry [in Russian], Dobrosvet, Moscow (2000).

    Google Scholar 

  6. I. M. Gel'fand and B. M. Levitan, “On determination of a differential equation by its spectral function,” Izv. Akad. Nauk SSSR, Ser. Mat., 15, 309–360 (1951).

    MathSciNet  Google Scholar 

  7. A. A. Goryunov and A. V. Saskovets, Inverse Scattering Problems in Acoustics [in Russian], MGU, Moscow (1989).

    Google Scholar 

  8. A. M. Denisov, Introduction to Inverse Problem Theory [in Russian], MGU, Moscow.

  9. A. A. Il'yushin, Plasticity, Foundations of General Mathematical Theory [in Russian], Akad. Nauk SSSR, Moscow (1963).

    Google Scholar 

  10. A. A. Il'yushin and B. E. Pobedria, Foundations of Mathematical Theory of Thermoviscoelasticity [in Russian], Nauka, Moscow (1970).

    Google Scholar 

  11. S. L. Kosmatov, I. B. Rubashov, O. B. Ryazantsev, D. G. Chernikov, and B. I. Shneiderman, “Ultrasonic computational tomograph for diagnosis of mammary gland diseases,” In: Abstracts of Reports, All-Union Symposium on Computational Tomography [in Russian], Novosibirsk (1983), pp. 105–106.

  12. A. S. Kravchuk, “Tomography algorithms in elasticity theory,” Prikl. Mat. Mekh., 63, No.3, 491–494 (1999).

    MATH  MathSciNet  Google Scholar 

  13. A. S. Kravchuk, Foundations of Computer Tomography, Drofa (2001).

  14. A. S. Kravchuk, “Development of diagnosis method of impedance tomography,” In: Proceedings of International Conference “Fuzzy Systems, Intellectual Systems, and Technology —NLIST-97” [in Russian]. VladGU, Vladimir (1997).

    Google Scholar 

  15. A. S. Kravchuk, “Development of mathematical model of impedance computer tomography for biomedical diagnosis,” In: Scientific Proceedings of III International Scientific-Technical Conference “Fundamental and Applied Problems of Instrument-Making, Informatics, Economics, and Law,” Instrument-Making Book [in Russian], MGAPI, Moscow (2000), pp. 102–107.

    Google Scholar 

  16. A. S. Kravchuk, Variational and Quasi-Variational Inequalities in Mechanics [in Russian], NGAPI, Moscow (1997).

    Google Scholar 

  17. A. S. Kravchuk, “On determination of linear and nonlinear properties of inhomogeneous materials,” Mat. Model. Syst. Protsessov, No. 9, 67–77 (2001).

  18. M. M. Lavrent'ev, V. G. Romanov, and S. P. Shishatskii, Ill-Posed Problems of Mathematical Physics and Analysis [in Russian], SO Nauka, Nobosibirsk (1980).

    Google Scholar 

  19. J.-L. Lions Certain Methods for Solving Nonlinear Boundary-Value Problems [Russian translation], Mir, Moscow (1972).

    Google Scholar 

  20. V. A. Marchenko, “Certain problems of a second-order differential operator,” Dokl. Akad. Nauk SSSR, 76, No.3, 457–460 (1950).

    Google Scholar 

  21. V. V. Klyuev (Ed).,Nondestructive Control and Diagnosis: A Handbook [in Russian], Mashinostroenie, Moscow (1995).

    Google Scholar 

  22. G. Knolet, C. Chapman, at all., Seismic Tomography with Application in Global Seismology and Geophysical Exploration [Russan translation], Mir, Moscow (1990).

    Google Scholar 

  23. B. E. Pobedria, Mechanics of Composite Materials [in Russian], MGU, Moscow (1984).

    Google Scholar 

  24. B. E. Pobedria, Lectures on Tensor Analysis [in Russian], MGU, Moscow (1986).

    Google Scholar 

  25. C. Hill (Ed.), Application of Ultrasound in Medicine [Russian translation], Mir, Moscow (1989).

    Google Scholar 

  26. I. Radon, “On determination of functions by their integrals over certain manifolds,” In: S. Helgason, Radon Transform [Russian translation], Mir, Moscow (1983).

    Google Scholar 

  27. A. G. Ramm, Higher-Dimensional Inverse Scattering Problems [Russian translation], Mir, Moscow (1994).

    Google Scholar 

  28. Ya. Rykhevskii, CEIIINOSSSTTOY, Mathematical Structure of Elastic Bodies [in Russian], Preprint No. 217, Inst. Prikl. Mekh., Akad. Nauk SSSR.

  29. V. V. Stepanov, A Course of Differential Equations [in Russian], Fizmatgiz, Moscow (1958).

    Google Scholar 

  30. A. N. Tikhonov and V. Ya. Arsenin, Methods for Solutions of Ill-Posed Problems [in Russian], Nauka, Moscow (1979).

    Google Scholar 

  31. V. G. Yakhno, Inverse Problems for Elasticity Theory Equations [in Russian], SO Nauka, Novosibirsk (1980).

    Google Scholar 

  32. T. Arens, “Linear sampling methods for 2D inverse elastic wave scattering,” Inverse Problems, 17, 1445–1464 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  33. L. Bocher and P. Delobelle, “Etude experimental du comportement cyclic d'un acier du type 316L sous chargement multiaxial complexe en traction-torsion-pression interne et externe,” J. Phis. III France, 7, 1755–1777 (1997).

    Google Scholar 

  34. J. F. Bonnans, J. S. Gilbert, C. Lemarechal, and C. Sagastizabal., Optimisation Numerique, Springer-Verlag (1997).

  35. A. Bouchou and P. Delobelle, “Behaviour and modelization of a 17–20 SPH stainless steel under cyclic, unidirectional and bidirectional anisothermal loadings,” Nucl. Eng. Des., 162, 21–45 (1996).

    Google Scholar 

  36. H. D. Bui, Introduction aux Problemes Inverse en Mecanique des Materiaux, Eyrolles, Paris (1993).

    Google Scholar 

  37. A. P. Calderon, “On an inverse boundary value problem,” In: Seminar on Numerical Analysis and its Applications to Continuum Physics, Soc. Brasiliera de Mathematica, Rio de Janeiro (1980).

    Google Scholar 

  38. C. Cavaterra and M. Graselli, Identifying Memory Kernels in Linear Thermoviscoelasticity of Boltzmann Type, Universita degli studi di Milano, Quaderno No. 36/1993 (1993).

  39. D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Springer-Verlag, Berlin (1998).

    Google Scholar 

  40. A. Constantinescu, “On the identification of elastic moduli from displacement-force boundary measurements,” Inverse Problems in Engineering, 1, 293–313 (1995).

    Google Scholar 

  41. K. A. Dines and R. J. Lytles, “Analysis of electrical conductivity imaging,” Geophysics, 46, No.7, 1025–1036 (1981).

    Article  Google Scholar 

  42. D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, Reading, MA (1989).

    Google Scholar 

  43. M. Graselli, “An inverse problem in three-dimensional linear thermoviscoelasticity of Bolzmann type,” In: A. N. Tikhonov (Ed.), Ill-Posed Problems in the Natural Sciences [in Russian], TVP, Moscow (1992), pp. 284–299.

    Google Scholar 

  44. T. A. Karkkainen, “Linearization technique and error estimates for distributed parameter identification in quasilinear problems,” Numer. Funct. Anal. Optim., 17, Nos. 3–4, 345–364 (1996).

    MathSciNet  Google Scholar 

  45. A. S. Kravchuk, Identification des Proprietes Mecanique et de la Topologie des Structures, Universite de Franche-Comte, UFR Science et Technique, Besancon, (2002).

    Google Scholar 

  46. A. Kress, “Inverse elastic scattering from a crack,” Inverse Problems, 12, 667–684 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  47. N. Nishimura, “A numerical method of crack determination by boundary integral equation method,” In: A. N. Tikhonov (Ed.), Ill-Posed Problems in Natural Sciences [in Russian], IVP, Moscow (1992), pp. 553–562.

    Google Scholar 

  48. S. Webb, The Physics of Medical Imaging, Medical Science Series, Adam Hilger IOP Publ., Bristol-Philadelphia (1988).

    Google Scholar 

  49. J. Radon, “Uber die Bestimmung von Funktionen durch ihre Inegralwrte langs gewisser Mannigfaltigkeiten,” Berichte Sachsische Akademie der Wissenschaften, Leipzig, Math.-Phys., Kl., 69, 262–267.

  50. F. Richard, J. Rousseau J. L. Ferry, and D. Perreux “Optimization du dimensionnement d'une structure composite: prise en compte du risque de defaillance,” Rev. Composites Materiaux Avances, 8 (1998).

  51. G. Rus and R. Gallego, “Optimization algorithm for identification inverse problems with the boundary element method,” Engineering Anal. Boundary Elements, 26, 315–327 (2002).

    Google Scholar 

  52. Quek Ser-Tong et all, “Sensitivity analysis of crack detection in beams by wavelet technique,” Int. J. Mech. Sci., 243, 2899–2910 (2001).

    Google Scholar 

  53. A. Tarantola, Inverse Problem Theory, Elsevier (1987).

  54. Vauhkonen N., J. P. Kaipio, E. Somersalo, and P. A. Karjalainen, “Electrical impedance tomography with basis constraints,” Inverse Problems, 13, 523–530 (1987).

    MathSciNet  Google Scholar 

  55. W. Weik, H. Andra, and E. Schnack, “An alternating iterative algorithm for the reconstruction of internal cracks in a three-dimensional body,” Inverse Problems, 17, 1957–1975 (2001).

    MathSciNet  Google Scholar 

  56. A. Wexler, B. Fry, and M. R. Neuman, “Impedance-computed tomography algorithm and systems,” Appl. Optics, 24, 3985–3992 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Sovremennaya Matematika i Ee Prilozheniya (Contemporary Mathematics and Its Applications), Vol. 16, Partial Differential Equations, 2004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kravchuk, A.S. Identification of the Topology of Inhomogeneous Dynamical Systems. J Math Sci 133, 903–930 (2006). https://doi.org/10.1007/s10958-006-0025-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-006-0025-x

Keywords

Navigation