Skip to main content
Log in

Counting Complex Points of Surfaces in ℂ2

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

We deal with complex points of two-dimensional surfaces. A short survey of basic results about complex points of smooth surfaces in ℂ2 is presented at the beginning. For algebraic surfaces, a formula is proven which expresses the number of complex points as the local degree of an explicitly constructed polynomial endomorphism. Using this formula, some estimates for the number of complex points and the Maslov index are obtained in terms of algebraic degrees of defining equations with special attention paid to graphs of planar endomorphisms. Some estimates for the expected number of complex points of a random planar endomorphism are also obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. T. Aliashvili, “Signature method for counting points in semi-algebraic subsets,” Bull. Georgian Acad. Sci., 154, 34–36 (1996).

    MATH  MathSciNet  Google Scholar 

  2. T. Aliashvili, “Counting real roots of polynomial endomorphisms,” J. Math. Sci., 118, No.5, 5325–5346 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  3. T. Aliashvili, “On invariants of random planar endomorphisms,” Banach Center Publ., 62, 19–28 (2004).

    MATH  MathSciNet  Google Scholar 

  4. V. Arnol'd, “Index of a singular point of a vector field, Petrovsky-Oleynik inequalities, and mixed Hodge structures,” Funkts. Anal. Prilozh., 12, 1–14 (1978).

    MATH  Google Scholar 

  5. V. Arnol'd, A. Varchenko, and S. Gusein-Zade, Singularities of Differentiable Mappings [in Russian], Vol. 1, Nauka, Moscow (1982).

    MATH  Google Scholar 

  6. M. Berry and J. Hannay, “Umbilic points of Gaussian random surfaces,” J. Phys. A: Math. Gen., 10, 1809–1821 (1977).

    Google Scholar 

  7. E. Bishop, “Differentiable manifolds in complex Euclidean space,” Duke Math. J., 32, 1–21 (1965).

    Article  MATH  MathSciNet  Google Scholar 

  8. W. Bruce, “Euler characteristics of real varieties,” Bull. Lond. Math. Soc., 22, 213–219 (1990).

    MathSciNet  Google Scholar 

  9. S. Chern and E. Spanier, “A theorem on orientable surfaces in four-dimensional space,” Comment. Math. Helv., 25, 205–214 (1951).

    MathSciNet  MATH  Google Scholar 

  10. B. Dubrovin, S. Novikov, and A. Fomenko, Modern Geometry [in Russian], Nauka, Moscow (1979).

    Google Scholar 

  11. A. Edelman and E. Kostlan, “How many roots of a real polynomial are real?” Bull. Amer. Math. Soc., 32, 1–37 (1995).

    MathSciNet  MATH  Google Scholar 

  12. D. Eisenbud and H. Levine, “An algebraic formula for the degree of a C map-germ,” Ann. Math., 106, 19–38 (1977).

    Article  MathSciNet  Google Scholar 

  13. F. Forstneric, “Complex tangents of real surfaces in complex surfaces,” Duke Math. J., 67, 353–376 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  14. A. Givental, “Lagrangian embeddings of surfaces and unfolded Whitney umbrellas,” Funkts. Anal. Prilozh., 20, 35–41 (1986).

    MATH  MathSciNet  Google Scholar 

  15. G.-M. Greuel and H. Hamm, “Invarianten quasihomogener Durchschnitte,” Invent. Math., 49, 67–86 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  16. P. Griffiths and J. Harris, Principles of Algebraic Geometry, J. Wiley and Sons, New York (1978).

    MATH  Google Scholar 

  17. M. Gromov, “Pseudo-holomorphic curves in symplectic manifolds,” Invent. Math., 82, 307–347 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  18. I. Ibragimov and S. Podkorytov, “On random algebraic surfaces,” Dokl. Ross. Akad. Nauk, 343, 734–736 (1995).

    MathSciNet  Google Scholar 

  19. G. Ishikawa and T. Ohmoto, “Local invariants of singular surfaces in an almost complex four-manifold,” Ann. Glob. Anal. Geom., 11, 125–133 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  20. G. Khimshiashvili, “On the local degree of a smooth mapping,” Bull. Acad. Sci. Georgian SSR, 85, 31–34 (1977).

    Google Scholar 

  21. G. Khimshiashvili, “On the cardinality of a semi-algebraic subset,” Georgian Math. J., 1, 511–521 (1994).

    Google Scholar 

  22. G. Khimshiashvili, “On topological invariants of totally real singularities,” Georgian Math. J., 8, 97–109 (2001).

    MATH  MathSciNet  Google Scholar 

  23. G. Khimshiashvili, “Signature formulae for topological invariants,” Proc. A. Razmadze Math. Inst., 125, 1–121 (2001).

    MATH  MathSciNet  Google Scholar 

  24. G. Khimshiashvili, “Topological aspects of random polynomials,” Bull. Georgian Acad. Sci., 168, 5–8 (2003).

    Google Scholar 

  25. G. Khimshiashvili and A. Ushveridze, “On the average topological degree of random polynomials,” Bull. Georgian Acad. Sci., 159, 385–388 (1999).

    MathSciNet  MATH  Google Scholar 

  26. G. Khimshiashvili and E. Wegert, “Analytic discs and totally real surfaces,” Bull. Georgian Acad. Sci., 162, 41–44 (2000).

    MathSciNet  MATH  Google Scholar 

  27. G. Khimshiashvili and E. Wegert, “Complex points of planar endomorphisms,” Bull. Georgian Acad. Sci., 165, 26–29 (2002).

    MathSciNet  Google Scholar 

  28. G. Khimshiashvili and E. Wegert, “Analytic discs and complex points of surfaces,” Bull. Soc. Sci. Lett. Lodz, 52, 145–164 (2002).

    Google Scholar 

  29. A. Khovansky, “Index of a polynomial vector field,” Funkts. Anal. Prilozh., 13, 49–58 (1979).

    Google Scholar 

  30. H.-F. Lai, “Characteristic classes of real manifolds immersed in complex manifolds,” Trans. Amer. Math. Soc., 172, 1–33 (1972).

    MathSciNet  Google Scholar 

  31. A. Lecki and Z. Szafraniec, “An algebraic method for calculating the topological degree,” Banach Center Publ., 35, 73–83 (1996).

    MathSciNet  Google Scholar 

  32. D. McDuff, “The local behaviour of holomorphic curves in almost complex 4-manifolds,” J. Differ. Geom., 34, 143–164 (1991).

    MATH  MathSciNet  Google Scholar 

  33. S. Podkorytov, “The mean value of the Euler characteristic of a random algebraic hypersurface,” Algebra Analiz, 11, 185–193 (1999).

    MathSciNet  Google Scholar 

  34. M. Shub and S. Smale, “Complexity of Bezout's theorem, II: Volumes and probabilities,” Progr. Math., 109, 267–285 (1993).

    MathSciNet  Google Scholar 

  35. E. Spanier, Algebraic Topology, McGraw-Hill, New York (1966).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Sovremennaya Matematika i Ee Prilozheniya (Contemporary Mathematics and Its Applications), Vol. 15, Theory of Functions, 2004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aliashvili, T. Counting Complex Points of Surfaces in ℂ2 . J Math Sci 132, 700–715 (2006). https://doi.org/10.1007/s10958-006-0018-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-006-0018-9

Keywords

Navigation