Advertisement

Journal of Mathematical Sciences

, Volume 131, Issue 2, pp 5471–5494 | Cite as

A New Approach to the Representation Theory of the Symmetric Groups. II

  • A. M. Vershik
  • A. Yu. Okounkov
Article

Abstract

The present paper is a revised Russian translation of the paper “A new approach to representation theory of symmetric groups,” Selecta Math., New Series, 2, No. 4, 581–605 (1996). Numerous modifications to the text were made by the first author for this publication. Bibliography: 35 titles.

Keywords

Russian Translation Representation Theory Symmetric Group Numerous Modification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    H. Weyl, The Classical Groups, Their Invariants and Representations, Princeton Univ. Press, Princeton, New Jersey (1939).Google Scholar
  2. 2.
    A. M. Vershik, “Uniform algebraic approximations of shift and multiplication operators,” Sov. Math. Dokl., 24, 97–100 (1981).Google Scholar
  3. 3.
    S. Kerov and A. Vershik, “Locally semisimple algebras. Combinatorial theory and the K 0-functor,” J. Sov. Math., 38, 1701–1733 (1987).CrossRefGoogle Scholar
  4. 4.
    A. M. Vershik and A. Yu. Okounkov, “An inductive method of presenting the theory of representations of symmetric groups,” Russian Math. Surveys, 51, No.2, 355–356 (1996).Google Scholar
  5. 5.
    I. M. Gelfand and M. L. Tsetlin, “Finite-dimensional representations of the group of unimodular matrices,” Dokl. Akad. Nauk SSSR, 71, 825–828 (1950).Google Scholar
  6. 6.
    I. M. Gelfand and M. L. Tsetlin, “Finite-dimensional representations of the group of orthogonal matrices,” Dokl. Akad. Nauk SSSR, 71, 1017–1020 (1950).Google Scholar
  7. 7.
    V. F. Molchanov, “On matrix elements of irreducible representations of the symmetric group,” Vestnik Mosk. Univ., 1, 52–57 (1966).Google Scholar
  8. 8.
    A. Yu. Okounkov, “Thoma's theorem and representations of the infinite bisymmetric group,” Funct. Anal. Appl., 28, No.2, 101–170 (1994).CrossRefGoogle Scholar
  9. 9.
    A. Yu. Okounkov, “On representations of the infinite symmetric group,” Zap. Nauchn. Semin. POMI, 240, 166–228 (1996).Google Scholar
  10. 10.
    G. I. Olshanski, “Extension of the algebra U(\(\mathfrak{g}\)) for infinite-dimensional classical Lie algebras \(\mathfrak{g}\) and the Yangians Y(\(\mathfrak{g}\mathfrak{l}\)(m)),” Soviet Math. Dokl., 36, 569–573 (1988).Google Scholar
  11. 11.
    G. I. Olshanski, “Unitary representations of (G, K)-pairs that are connected with the infinite symmetric group S(∞),” Leningrad Math. J., 1, No.4, 983–1014 (1989).Google Scholar
  12. 12.
    I. A. Pushkarev, “To the representation theory of wreath products of finite groups with symmetric groups,” Zap. Nauchn. Semin. POMI, 240, 229–244 (1996).Google Scholar
  13. 13.
    I. Cherednik, “On special bases of irreducible finite-dimensional representations of the degenerate affine Hecke algebra,” Funct. Anal. Appl., 20, No.1, 87–88 (1986).CrossRefGoogle Scholar
  14. 14.
    I. Cherednik, “A unification of Knizhnik-Zamolodchikov and Dunkl operators via affine Hecke algebras,” Invent. Math., 106, No.2, 411–431 (1991).CrossRefGoogle Scholar
  15. 15.
    P. Diaconis and C. Greene, “Applications of Murphy's elements,” Stanford University Tech. Report, No. 335 (1989).Google Scholar
  16. 16.
    V. Drinfeld, “Degenerated affine Hecke algebras and Yangians,” Funct. Anal. Appl., 20, 56–58 (1986).CrossRefGoogle Scholar
  17. 17.
    G. D. James, The Representation Theory of the Symmetric Group, Springer-Verlag, Berlin (1978).Google Scholar
  18. 18.
    G. James and A. Kerber, The Representation Theory of the Symmetric Group, Addison-Wesley, Reading (1981).Google Scholar
  19. 19.
    A. Jucys, “Symmetric polynomials and the center of the symmetric group ring,” Reports Math. Phys., 5, 107–112 (1974).CrossRefGoogle Scholar
  20. 20.
    S. Kerov, G. Olshanski, and A. Vershik, “Harmonic analysis on the infinite symmetric group. A deformation of the regular representation,” C. R. Acad. Sci. Paris Ser. I. Math., 316, No.8, 773–778 (1993).Google Scholar
  21. 21.
    S. Kerov, G. Olshanski, and A. Vershik, “Harmonic analysis on the infinite symmetric group,” Invent. Math., to appear.Google Scholar
  22. 22.
    G. Lusztig, “Affine Hecke algebras and their graded version,” J. Amer. Math. Soc., 2, No.3, 599–635 (1989).Google Scholar
  23. 23.
    I. G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd edition, Oxford University Press, New York (1995).Google Scholar
  24. 24.
    G. Murphy, “A new construction of Young's seminormal representation of the symmetric group,” J. Algebra, 69, 287–291 (1981).CrossRefGoogle Scholar
  25. 25.
    M. L. Nazarov, “Projective representations of the infinite symmetric group,” in: Representation Theory and Dynamical Systems, A. Vershik (ed.), Amer. Math. Soc., Providence, Rhode Island (1992).Google Scholar
  26. 26.
    M. Nazarov, “Young's orthogonal form for Brauer's centralizer algebra,” J. Algebra, 182, No.3, 664–693 (1996).CrossRefGoogle Scholar
  27. 27.
    A. Okounkov “Young basis, Wick formula, and higher Capelli identities,” Internat. Math. Res. Notices, 17, 817–839 (1996).CrossRefGoogle Scholar
  28. 28.
    A. Ram, “Seminormal representations of Weyl groups and Iwahori-Hecke algebras,” Proc. London Math. Soc. (3), 75, 99–133 (1997).CrossRefGoogle Scholar
  29. 29.
    J. D. Rogawski, “On modules over the Hecke algebra of a p-adic group,” Invent. Math., 79, No.3, 443–465 (1985).CrossRefGoogle Scholar
  30. 30.
    A. Vershik, “Local algebras and a new version of Young's orthogonal form,” in: Topics in Algebra, Part 2: Commutative Rings and Algebraic Groups, Banach Cent. Publ., Vol. 26, part 2 (1990), pp. 467–473.Google Scholar
  31. 31.
    A. Vershik, “Local stationary algebras,” Amer. Math. Soc. Transl. (2), 148, 1–13 (1991).Google Scholar
  32. 32.
    A. Vershik, “Asymptotic aspects of the representation theory of symmetric groups,” Selecta Math. Sov., 11, No.2, 159–180 (1992).Google Scholar
  33. 33.
    Asymptotic Combinatorics with Applications to Mathematical Physics, A. M. Vershik (ed.), Springer-Verlag, Berlin-Heidelberg-New York (2003).Google Scholar
  34. 34.
    A. M. Vershik, “Gelfand-Tsetlin algebras, expectations, inverse limits, Fourier analysis,” in: Unity of Mathematics. Conference dedicated to I. M. Gelfand, toappear.Google Scholar
  35. 35.
    D. Zagier, Appendix to the book S. K. Lando, A. K. Zvonkin, Graphs on Surfaces and Their Applications, Springer, Berlin (2004).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • A. M. Vershik
    • 1
  • A. Yu. Okounkov
    • 2
  1. 1.St. Petersburg Department of the Steklov Mathematical InstituteSt. PetersburgRussia
  2. 2.Princeton UniversityUSA

Personalised recommendations