Skip to main content
Log in

Diophantine Undecidability for Some Function Fields of Infinite Transcendence Degree and Positive Characteristic

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

Let M be a field of positive characteristic p > 0 such that C, the closure of a finite field in M, has an extension of degree p. Let L be a field finitely generated over C and such that M and L are linearly disjoint over C. Then Hilbert’s tenth problem is not decidable over ML. Bibliography: 41 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. Artin, Algebraic Numbers and Algebraic Functions, Gordon Breach Science Publishers, New York (1986).

    Google Scholar 

  2. J. W. S. Cassels and A. Frolich, Algebraic Number Theory, Thompson Book Co, Washington, D. C. (1967).

    Google Scholar 

  3. C. Chevalley, Introduction to the Theory of Algebraic Functions of One Variable (Math. Surveys, 6), American Mathematical Society, Providence, Rhode Island (1951).

    Google Scholar 

  4. J.-L. Colliot-Thelene, A. Skorobogatov, and P. Swinnerton-Dyer, “Double fibres and double covers: Paucity of rational points,” Acta Arithm., 79, 113–135 (1997).

    Google Scholar 

  5. G. Cornelissen and K. Zahidi, “Topology of diophantine sets: Remarks on Mazur’s conjectures,” in: Hilbert’s Tenth Problem: Relations with Arithmetic and Algebraic Geometry, J. Denef, L. Lipshitz, T. Pheidas, and J. Van Geel (eds.) (Contemp. Math., 270), American Mathematical Society (2000), pp. 253–260.

  6. M. Davis, “Hilbert’s tenth problem is unsolvable,” Amer. Math. Monthly, 80, 233–269 (1973).

    Google Scholar 

  7. M. Davis, Y. Matijasevich, and J. Robinson, “Hilbert’s tenth problem. Diophantine equations: Positive aspects of a negative solution,” Proc. Symp. Pure Math., 28, 323–378 (1976).

    Google Scholar 

  8. J. Denef, “Hilbert’s tenth problem for quadratic rings,” Proc. Amer. Math. Soc., 48, 214–220 (1975).

    Google Scholar 

  9. J. Denef, “The diophantine problem for polynomial rings and fields of rational functions,” Trans. Amer. Math. Soc., 242, 391–399 (1978).

    Google Scholar 

  10. J. Denef, “The diophantine problem for polynomial rings of positive characteristic,” Logic Colloq., 78, 131–145 (1979).

    Google Scholar 

  11. J. Denef, “Diophantine sets of algebraic integers. II,” Trans. Amer. Math. Soc., 257, No.1, 227–236 (1980).

    Google Scholar 

  12. J. Denef and L. Lipshitz, “Diophantine sets over some rings of algebraic integers,” J. London Math. Soc., 18, No.2, 385–391 (1978).

    Google Scholar 

  13. K. Eisentrager, “Hilbert’s tenth problem for algebraic function fields of characteristic 2,” Pacific J. Math. (to appear).

  14. M. Fried and M. Jarden, Field Arithmetic, Springer-Verlag, New York (1986).

    Google Scholar 

  15. G. Janusz, Algebraic Number Fields, Academic Press, New York (1973).

    Google Scholar 

  16. H. K. Kim and F. W. Roush, “Diophantine undecidability of ℂ(t1, t2),” J. Algebra, 150, No.1, 35–44 (1992).

    Google Scholar 

  17. H. K. Kim and F. W. Roush, “Diophantine unsolvability for function fields over certain infinite fields of characteristic p,” J. Algebra, 152, No.1, 230–239 (1992).

    Article  Google Scholar 

  18. H. K. Kim and F. W. Roush, “Diophantine unsolvability over p-adic function fields,” J. Algebra, 176, 83–110 (1995).

    Article  Google Scholar 

  19. S. Lang, Algebra, Addison Wesley, Reading, Massachusetts (1971).

    Google Scholar 

  20. B. Mazur, “The topology of rational points,” Exp. Math., 1, No.1, 35–45 (1992).

    Google Scholar 

  21. B. Mazur, “Questions of decidability and undecidability in number theory,” J. Symb. Logic, 59, No.2, 353–371 (1994).

    Google Scholar 

  22. B. Mazur, “Speculation about the topology of rational points: An up-date,” Asterisque, 228, 165–181 (1995).

    Google Scholar 

  23. B. Mazur, “Open problems regarding rational points on curves and varieties,” in: Galois Representations in Arithmetic Algebraic Geometry, A. J. Scholl and R. L. Taylor (eds.), Cambridge University Press (1998).

  24. T. Pheidas, “An undecidability result for power series rings of positive characteristic. II,” Proc. Amer. Math. Soc., 100, No.3, 526–530 (1987).

    Google Scholar 

  25. T. Pheidas, “Hilbert’s tenth problem for a class of rings of algebraic integers,” Proc. Amer. Math. Soc., 104, No.2, 611–620 (1988).

    Google Scholar 

  26. T. Pheidas, “Hilbert’s tenth problem for fields of rational functions over finite fields,” Invent. Math., 103, 1–8 (1991).

    Article  Google Scholar 

  27. H. Shapiro and A. Shlapentokh, “Diophantine relations between algebraic number fields,” Commun. Pure Appl. Math., XLII, 1113–1122 (1989).

    Google Scholar 

  28. A. Shlapentokh, “Extension of Hilbert’s tenth problem to some algebraic number fields,” Commun. Pure Appl. Math., XLII, 939–962 (1989).

    Google Scholar 

  29. A. Shlapentokh, “Diophantine undecidability in some rings of algebraic numbers of totally real infinite extensions of ℚ,” Ann. Pure Appl. Logic, 68, 299–325 (1994).

    Article  Google Scholar 

  30. A. Shlapentokh, “Algebraic and Turing separability of rings,” J. Algebra, 185, 229–257 (1996).

    Article  Google Scholar 

  31. A. Shlapentokh, “Diophantine undecidability of algebraic function fields over finite fields of constants,” J. Number Theory, 58, No.2, 317–342 (1996).

    Article  Google Scholar 

  32. A. Shlapentokh, “Diophantine definability over some rings of algebraic numbers with infinite number of primes allowed in the denominator,” Invent. Math., 129, 489–507 (1997).

    Article  Google Scholar 

  33. A. Shlapentokh, “Defining integrality at prime sets of high density in number fields,” Duke Math. J., 101, No.1, 117–134 (2000).

    Article  Google Scholar 

  34. A. Shlapentokh, “Hilbert’s tenth problem for algebraic function fields over infinite fields of constants of positive characteristic,” Pacific J. Math., 193, No.2, 463–500 (2000).

    Google Scholar 

  35. A. Shlapentokh, “Hilbert’s tenth problem over number fields, a survey,” in: Hilbert’s Tenth Problem: Relations with Arithmetic and Algebraic Geometry, J. Denef, L. Lipshitz, T. Pheidas, and J. Van Geel (eds.) (Contemp. Math., 270), American Mathematical Society (2000), pp. 107–137.

  36. A. Shlapentokh, “Diophantine undecidability of function fields of characteristic greater than 2 finitely generated over a field algebraic over a finite field,” Comp. Math., 132, No.1, 99–120 (2002).

    Article  Google Scholar 

  37. A. Shlapentokh, “On diophantine definability and decidability in large subrings of totally real number fields and their totally complex extensions of degree 2,” J. Number Theory, 95, 227–252 (2002).

    Google Scholar 

  38. A. Shlapentokh, “A ring version of Mazur’s conjecture on topology of rational points,” Int. Math. Res. Notices, 7, 411–423 (2003).

    Article  Google Scholar 

  39. C. Videla, “Hilbert’s tenth problem for rational function fields in characteristic 2,” Proc. Amer. Math. Soc., 120, No.1, 249–253 (1994).

    Google Scholar 

  40. A. Weil, Basic Number Theory, Springer-Verlag (1974).

  41. K. Zahidi, “The existential theory of real hyperelliptic fields,” J. Algebra, 233, No.1, 65–86 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Published in Zapiski Nauchnykh Seminarov POMI, Vol. 304, 2003, pp. 141–167.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shlapentokh, A. Diophantine Undecidability for Some Function Fields of Infinite Transcendence Degree and Positive Characteristic. J Math Sci 130, 4631–4642 (2005). https://doi.org/10.1007/s10958-005-0358-x

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-005-0358-x

Keywords

Navigation