Skip to main content
Log in

Well-posedness of mathematical models of continuum mechanics and thermodynamics

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

Mathematical models of nonequilibrium thermodynamics related to the concepts of stability and well-posedness are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. N. Alikakos P. Bates (1988) ArticleTitleOn the singular limit in a phase field model of a phase transition Ann. Inst. H. Poincaré Anal. Non Lineaire 5 1–38

    Google Scholar 

  2. H. W. Alt I. Pawlow (1992) ArticleTitleExistence of solutions for non-isothermal phase separation Adv. Math. Sci. Appl. 1 IssueID2 319–409

    Google Scholar 

  3. V. M. Babich A. A. Klimova (1995) ArticleTitleHyperbolic equation with large parameter at lower terms, and the hierarchy of waves St. Petersburg Math. J. 6 IssueID5 1001–1038

    Google Scholar 

  4. J. Bailly (1996) Local Existence of Classical Solutions to First-Order Parabolic Equations Describing Free Boundaries University de Paris-Sud Mathematiques Batiment 425 91405 Orsay France

    Google Scholar 

  5. G. Caginalp (1989) ArticleTitleStefan and Hele-Shaw type models as asymptotic limits of the phase field equations Phys. Rev. A. 39 5887–5896

    Google Scholar 

  6. G. Caginalp (1990) ArticleTitleStefan and Hele-Shaw type models as asymptotic limits of the phase field equations Phys. Rev. A. 39 101–111

    Google Scholar 

  7. G. Caginalp X. Chen (2000) ArticleTitleConvergence of the phase field model to its sharp interface limits Euro. J. Appl. Math. 12 20–42

    Google Scholar 

  8. J. W. Cahn J. E. Hilliard (1958) ArticleTitleFree energy of a non-uniform system. Part I: Interfacial free energy J. Chem. Phys. 28 IssueID1 258–267

    Google Scholar 

  9. J. W. Cahn J. E. Hilliard (1959) ArticleTitleFree energy of a nonuniform system. III. Nucleation in a two-component incompressible fluid J. Chem. Phys. 31 IssueID3 688–699

    Google Scholar 

  10. S. Chandrasekhar (1943) ArticleTitleStochastic problems in physics and astronomy Rev. Modern. Phys. 15 2–87

    Google Scholar 

  11. S. C. Chapman and T. C. Cowling, The Mathematical Theory of Non-Uniform Gases, Cambridge University Press (1961).

  12. G. Q. Chen (1993) ArticleTitleQuasidecoupling method for discontinuous solutions to conservation law Comm. Pure Appl. Math. 46 755–781

    Google Scholar 

  13. G. Q. Chen C. D. Levermore T. P. Lui (1994) ArticleTitleHyperbolic conservation laws with stiff relaxation terms and entropy Comm. Pure Appl. Math. 47 787–830 Occurrence Handle95h:35133 Occurrence Handle0806.35112

    MathSciNet  MATH  Google Scholar 

  14. G. Q. Chen Y. G. Lu (1989) ArticleTitleA study on application of the theory of compensated compactness Chinese Sci. Bull. 34 15–19

    Google Scholar 

  15. A. R. Crowley J. R. Ockendon (1987) ArticleTitleModeling mushy regions Appl. Sci. Res. 44 1–7

    Google Scholar 

  16. V. G. Danilov G. A. Omel’yanov E. V. Radkevich (1999) ArticleTitleHugoniot-type conditions and weak solutions to the phase field system Eur. J. Appl. Math. 10 55–77

    Google Scholar 

  17. V. G. Danilov G. A. Omel’yanov E. V. Radkevich (1998) ArticleTitleAsymptotic solution of the conserved phase field system in the fast relaxation case Eur. J. Appl. Math. 9 1–21

    Google Scholar 

  18. V. G. Danilov G. A. Omel’yanov E. V. Radkevich (1995) ArticleTitleAsymptotic solution of a phase field system and the modified Stefan problem Differents Uravn. 31 IssueID3 483–491

    Google Scholar 

  19. R. DiPerna (1983) ArticleTitleConvergence of approximate solution to conservation laws Arch. Rational Mech. Anal. 82 27–70

    Google Scholar 

  20. W. Dreyer W. H. Müller (2000) ArticleTitleA study of the coarsening in tin/lead solders Internat. J. Solids Structures 37 3841–3871

    Google Scholar 

  21. W. Dreyer M. Junk M. Kunik (2001) ArticleTitleOn the approximation of the Fokker-Planck equation by moment systems Nonlinearity 14 881–906 Occurrence Handle10.1088/0951-7715/14/4/314 Occurrence Handle2002j:82083 Occurrence Handle1019.82014

    Article  MathSciNet  MATH  Google Scholar 

  22. Y. V. Egorov (1984) Linear Differential Equations of the Main Type Nauka Moscow

    Google Scholar 

  23. C. M. Elliott J. R. Ockendon (1982) Weak and Variational Methods for Moving Boundary Problems Pitman Boston

    Google Scholar 

  24. M. V. Fedoryuk (1983) Asymptotic Methods for Linear Ordinary Differential Equations Nauka Moscow

    Google Scholar 

  25. I. M. Gelfand G. E. Shilov (1959) Distributions and Operations with Them Fizmatlit Moscow

    Google Scholar 

  26. S. G. Godunov (1978) Elements of Continuum Mechanics Nauka Moscow

    Google Scholar 

  27. H. Grad (1949) On the kinetic theory of rarefied gases Comm. Pure Appl. Math. Wiley New York

    Google Scholar 

  28. C. Hermite, Oeuvres I, Paris (1905),pp.397–414.

  29. L. Hörmander, Lectures on Nonlinear Hyperbolic Differential Equations, Mathematics and Applications, Springer-Verlag (1997).

  30. S. D. Howison A. A. Lacey J. R. Ockendon (1988) ArticleTitleHele—Shaw free-boundary problems with suction Quart. J. Mech. Appl. Math. 41 183–193

    Google Scholar 

  31. A. M. Il’in (1989) Coordination of Asymptotic Expansions of Solutions of Boundary-Value Problems Nauka Moscow

    Google Scholar 

  32. M. Junk (1998) ArticleTitleDomain of definition of Levermore’s five-moment system J. Statist. Phys. 93 1143–1167

    Google Scholar 

  33. A. A. Lacey A. B. Taylor (1983) ArticleTitleA mushy region in a Stefan problem IMA J. Appl. Math. 30 303–314

    Google Scholar 

  34. P. Lax (1957) ArticleTitleHyperbolic system of conservation laws. II Comm. Pure Appl. Math. 10 537–566 Occurrence Handle0081.08803

    MATH  Google Scholar 

  35. J. Leray (1984) Hyperbolic Differential Equations Nauka Moscow

    Google Scholar 

  36. C. D. Levermore (1996) ArticleTitleMoment closure hierarchies for kinetic theories J. Statist. Phys. 83 1021–1065

    Google Scholar 

  37. G. A. Lorentz (2001) Lectures on Thermodynamics NIC Moscow

    Google Scholar 

  38. S. Luckhaus (1990) ArticleTitleSolutions of the two-phase Stefan problem with the Gibbs-Thompson law for the melting temperature Eur. J. Appl. Math. 1 101–111

    Google Scholar 

  39. S. Luckhaus L. Modica (1989) ArticleTitleThe Gibbs—Thompson relation within the gradient theory of phase transitions Arch. Rat. Mech. Anal. 107 71–83

    Google Scholar 

  40. V. P. Maslov (1976) Shock wave propagation in isoentropic nonviscous gas Progress in Science and Technology, Series on Contemporary Problems in Mathematics All-Union Institute for Scientific and Technical Information (VINITI), Akad. Nauk SSSR Moscow 199–271

    Google Scholar 

  41. V. P. Maslov G. A. Omel’yanov (1983) ArticleTitleHugoniot-type conditions for infinitely narrow solutions of simple wave equations Sib. Mat. Zh. 24 IssueID5 172–182

    Google Scholar 

  42. V. P. Maslov G. A. Omel’yanov (1981) ArticleTitleAsymptotic soliton-like solutions of equations with small dispersion Russian. Math. Surveys 36 IssueID3 73–149

    Google Scholar 

  43. V. P. Maslov and V. A. Tsupin, “Necessary conditions of existence of infinitely thin solitons in gas dynamics,” Dokl. Akad. Nauk SSSR, 246, No. 9 (1979).

    Google Scholar 

  44. A. M. Meirmanov (1981) ArticleTitleAn example of nonexistence of a classical solution of the Stefan problem Sov. Math. Dokl. 23 564–566

    Google Scholar 

  45. L. Modica (1986) ArticleTitleThe gradient theory of phase transitions and the minimal interface criterion Arch. Rat. Mech. Anal. 98 123–142

    Google Scholar 

  46. I. Müller and T. Ruggeri, Extended Thermodynamics, Springer-Verlag (1993).

  47. F. Murat (1981) ArticleTitleL’injection du cone positif de H-1 dans W-1,q est compacte pour tout q < 2 Math. Pures Appl. 60 309–322 Occurrence Handle0471.46020

    MATH  Google Scholar 

  48. O. A. Oleinik E. V. Radkevich (1973) ArticleTitleOn the analyticity of solutions to linear partial differential equations Mat. Sb. 90 IssueID4 592–607

    Google Scholar 

  49. I. I. Petrovskii (1986) On the Cauchy Problem for Systems of Partial Differential Equations. Selected Works. Systems of Partial Differential Equations. Algebraic Geometry Nauka Moscow

    Google Scholar 

  50. P. I. Plotnikov (1997) ArticleTitleSingular limits of solutions to the Cahn—Hilliard equation Sib. Mat. J. 38 IssueID3 329–348

    Google Scholar 

  51. P. I. Plotnikov V. N. Starovoitov (1993) ArticleTitleStefan problem as the limit of the phase field system Differents. Uravn. 29 IssueID3 461–471

    Google Scholar 

  52. M. M. Postnikov (1981) Stable Polynomials Nauka Moscow

    Google Scholar 

  53. M. Primiserio (1982) Mushy region in phase-change problems K. H. Hoffmann R. Gorenfio (Eds) Applied Nonlinear Functional Analysis P. Lang Verlag Frankfurt/Main

    Google Scholar 

  54. E. V. Radkevich (1993) ArticleTitleOn asymptotic solutions of a phase field system Differents. Uravn. 29 IssueID3 487–500

    Google Scholar 

  55. E. V. Radkevich (1992) ArticleTitleExistence conditions for the classical solution of the modified Stefan problem (the Gibbs—Thompson law) Mat. Sb. 183 IssueID2 77–101

    Google Scholar 

  56. E. V. Radkevich (2003) Well-posedness of mathematical models in continuum mechanics and thermodynamics Progress in Science and Technology, Series on Contemporary Mathematics and Its Applications, Thematical Surveys All-Union Institute for Scientific and Technical Information (VINITI), Akad. Nauk SSSR Moscow

    Google Scholar 

  57. E. Radkevich K. Wilmanski (2000) A Riemann Problem for Poroelastic Materials with the Balance Equation for Porosity Weierstrass Institute Berlin

    Google Scholar 

  58. Y. Rumer M. Ryvkin (1977) Thermodynamics, Statistical Physics, and Kinetics Nauka Moscow

    Google Scholar 

  59. H. M. Soner (1995) ArticleTitleConvergence of the phase field equations to the Mullins-Sekerka problem with kinetic undercooling Arch. Rat. Mech. Anal. 131 139–197

    Google Scholar 

  60. H. Struchtrup W. Weiss (2000) ArticleTitleTemperature jump and velocity slip in the moment method Contin. Mech. Thermodyn. 12 1–18

    Google Scholar 

  61. J. C. Toledano P. Toledano (1994) The Landau Theory of Phase Transitions Mir Moscow

    Google Scholar 

  62. F. Treves (1982) Introduction to Pseudodifferential and Fourier Integral Operators The University Series in Mathematics, Plenum Press New York-London

    Google Scholar 

  63. O. A. Vasil’eva, E. V. Radkevich, and D. Hilhorst, “The classical Verigin—Masket problem, regularization problem and internal layers,” Tr. Mosk. Mat. Obs., 61, 25–74.

  64. M. I. Vishik L. A. Lusternik (1957) ArticleTitleRegular degeneration and boundary layer for linear differential equations with small parameter Usp. Mat. Nauk 12 IssueID5 3–120

    Google Scholar 

  65. L. R. Volevich E. V. Radkevich (2003) ArticleTitleUniform estimates of solutions to the Cauchy problem for hyperbolic equations with small parameter at higher derivatives Differents. Uravn. 39 IssueID3 1–14

    Google Scholar 

  66. L. R. Volevich M. G. Dzhavadov (1983) ArticleTitleUniform estimates of solutions of hyperbolic equations with small parameter at higher derivatives Differents. Uravn. 19 IssueID12 2082–2090

    Google Scholar 

  67. L. R. Volevich S. G. Gindikin (1999) Mixed Problem for Partial Differential Equations with Quasihomogeneous Principal Part Editorial URSS Moscow

    Google Scholar 

  68. G. B. Whitham (1974) Linear and Nonlinear Waves Wiley New York

    Google Scholar 

Download references

Authors

Additional information

Translated from Sovremennaya Matematika i Ee Prilozheniya (Contemporary Mathematics and Its Applications), Vol. 3, Partial Differential Equations, 2003.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radkevich, E.V. Well-posedness of mathematical models of continuum mechanics and thermodynamics. J Math Sci 125, 259–404 (2005). https://doi.org/10.1007/s10958-005-0001-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-005-0001-x

Keywords

Navigation