Skip to main content
Log in

Controllability of invariant systems on lie groups and homogeneous spaces

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Ph. Adda, “Contrôllabilité des systèmes bilinéaires generaux et homogenes dans ℝ2,” Lect. Notes Contr. Inf. Sci., 111, 205–214 (1988).

    MathSciNet  Google Scholar 

  2. Ph. Adda and G. Sallet, “Determination algorothmique de la contrôllabilité pour des families finies de champs de vecteurs lineaires sur ℝ2\{0}, R.A.I.R.O. APII, 24, 377–390 (1990).

    MATH  MathSciNet  Google Scholar 

  3. A. A. Agrachev, “Local controllability and semigroups of diffeomorphisms,” Acta Appl. Math., 32, 1–57 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  4. A. A. Agrachev, S. V. Vakhrameev, and R. V. Gamkrelidze, “Differential-geometric and group-theoretic methods in optimal control theory,” in: Progress in Science and Technology, Series on Problems in Geometry [in Russian], Vol. 14, All-Union Institute for Scientific and Technical Information (VINITI), Akad. Nauk SSSR, Moscow (1983), pp. 3–56.

    Google Scholar 

  5. H. Albuquerque and F. Silva Leite, “On the generators of semisimple Lie algebras,” Linear Algebra Appl., 119, 51–56 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  6. Yu. N. Andreev, “Differential-geometric methods in control theory,” Automat. Telemekh., No. 10, 5–46 (1982).

    Google Scholar 

  7. R. El Assoudi, “Accessibilité par des champs de vecteurs invariants à droite sur un groupe de Lie,” Thèse de doctorat de l’Université Joseph Fourier, Grenoble (1991).

  8. R. El Assoudi and J. P. Gauthier, “Controllability of right-invariant systems on real simple Lie groups of type F 4, G 2, C n, and B nMath. Control Signals Systems, 1, 293–301 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  9. R. El Assoudi and J. P. Gauthier, “Controllability of right-invariant systems on semi-simple Lie groups,” in: New Trends in Nonlinear Control Theory, Springer-Verlag 122 (1989), pp. 54–64.

  10. R. El Assoudi, J. P. Gauthier, and I. Kupka, “On subsemigroups of semisimple Lie groups,” Ann. Inst. Henri Poincaré, 13, No. 1, 117–133 (1996).

    MATH  Google Scholar 

  11. L. Auslander, L. Green, and F. Hahn, “Flows on homogeneous spaces,” Ann. Math. Studies, No. 53, Princeton Univ. Press, Princeton, New Jersey (1963).

    MATH  Google Scholar 

  12. V. Ayala Bravo, “Controllability of nilpotent systems,” in: Geometry in Nonlinear Control and Differential Inclusions, Banach Center Publications, Warszawa, 32 (1995), pp. 35–46.

    Google Scholar 

  13. V. Ayala Bravo and L. Vergara, “Co-adjoint representation and controllability,” Proyecciones, 11, 37–48 (1992).

    MathSciNet  Google Scholar 

  14. V. Ayala Bravo and I. Jiron, “Observabilidad del producto directo de sistemas bilineales,” Revista Cubo, 9, 35–46 (1993).

    Google Scholar 

  15. V. Ayala Bravo and J. Tirao, “Controllability of linear vector fields on Lie groups,” Int. Centre Theor. Physics, Preprint IC/95/310, Trieste, Italy (1994).

  16. V. Ayala Bravo and A. Hacibekiroglu, “Observability of linear systems on Lie groups,” Int. Centre Theor. Physics, Preprint IC/95/2, Trieste, Italy (1995).

  17. V. Ayala Bravo, O. Rojo, and R. Soto, “Observability of the direct product of bilinear systems on Lie groups,” Comput. Math. Appl., 36, No. 3, 107–112 (1998).

    Article  MathSciNet  Google Scholar 

  18. J. Basto Gonçalves, “Sufficient conditions for local controllability with unbounded controls,” SIAM J. Control Optim., 16, 1371–1378 (1987).

    Article  Google Scholar 

  19. J. Basto Gonçalves, “Controllability in codimension one,” J. Diff. Equat., 68, 1–9 (1987).

    Article  MATH  Google Scholar 

  20. J. Basto Gonçalves, “Local controllability in 3-manifolds,” Syst. Contr. Lett., 14, 45–49 (1990).

    Article  MATH  Google Scholar 

  21. J. Basto Gonçalves, “Local controllability of scalar input systems on 3-manifolds,” Syst. Contr. Lett., 16, 349–355 (1991).

    Article  MATH  Google Scholar 

  22. A. Bacciotti, “On the positive orthant controllability of two-dimensional bilinear systems,” Syst. Contr. Lett., 3, 53–55 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  23. A. Bacciotti and G. Stefani, “On the relationship between global and local controllability,” Math. Syst. Theory, 16, 79–91 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  24. R. M. Bianchini and G. Stefani, “Sufficient conditions of local controllability,” in: Proc. 25th IEEE Conf. Decis. Control, Athens (1986).

  25. B. Bonnard, “Contrôllabilité des systèmes bilinéaires,” Math. Syst. Theory, 15, 79–92 (1981).

    Article  MATH  MathSciNet  Google Scholar 

  26. B. Bonnard, “Contrôllabilité des systèmes bilinéaires,” in: Qutils Modeles Math. Autom. Anal. Syst. Trait Signal., Vol. 1, Paris (1981), pp. 229–243.

  27. B. Bonnard, “Controllabilité de systèmes mecaniques sur les groupes de Lie,” SIAM J. Control Optim., 22, 711–722 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  28. B. Bonnard, V. Jurdjevic, I. Kupka, and G. Sallet, “Transitivity of families of invariant vector fields on the semidirect products of Lie groups,” Trans. Amer. Math. Soc., 271, No. 2, 525–535 (1982).

    Article  MATH  MathSciNet  Google Scholar 

  29. W. Boothby, “A transitivity problem from control theory,” J. Diff. Equat., 17, 296–307 (1975).

    Article  MATH  MathSciNet  Google Scholar 

  30. W. M. Boothby, “Some comments on positive orthant controllability of bilinear systems,” SIAM J. Control Optim., 20, 634–644 (1982).

    Article  MATH  MathSciNet  Google Scholar 

  31. W. Boothby and E. N. Wilson, “Determination of the transitivity of bilinear systems,” SIAM J. Control, 17, 212–221 (1979).

    Article  MATH  MathSciNet  Google Scholar 

  32. A. Borel, “Some remarks about transformation groups transitive on spheres and tori,” Bull. Amer. Math. Soc., 55, 580–586 (1949).

    MATH  MathSciNet  Google Scholar 

  33. A. Borel, “Le plan projectif des octaves et les sphères comme espaces homogènes,” C. R. Acad. Sci. Paris, 230, 1378–1380 (1950).

    MATH  MathSciNet  Google Scholar 

  34. N. Bourbaki, Éléments de Mathématique, Groupes et Algèbres de Lie, Chapitre 2: Algèbres de Lie, Hermann, Paris (1960).

    Google Scholar 

  35. N. Bourbaki, Éléments de Mathématique, Groupes et Algèbres de Lie, Chapitre 2: Algèbres de Lie Libres. Chapitre 3: Groupes de Lie, Hermann, Paris (1972).

    Google Scholar 

  36. R. W. Brockett, “System theory on group manifolds and coset spaces,” SIAM J. Control, 10, 265–284 (1972).

    Article  MATH  MathSciNet  Google Scholar 

  37. R. W. Brockett, “Lie algebras and Lie groups in control theory,” in: Geometric Methods in System Theory, D. Q. Mayne and R. W. Brockett, eds., Proceedings of the NATO Advanced study institute held at London, August 27–September 7, 1983, Dordrecht-Boston, D. Reidel Publishing Company (1973), pp. 43–82.

    Google Scholar 

  38. R. W. Brockett, “On the reachable set for bilinear systems,” Lect. Notes Econ. Math. Syst., 111, 54–63 (1975).

    MathSciNet  Google Scholar 

  39. C. Bruni, G. Di Pillo, and G. Koch, “Bilinear systems: an appealing class of ‘nearly linear’ systems in theory and applications,” IEEE Trans. Autom. Control, 19, 334–348 (1974).

    Article  MATH  Google Scholar 

  40. J. L. Casti, “Recent developments and future perspectives in nonlinear system theory,” SIAM Review, 24, No. 2, 301–331 (1982).

    Article  MATH  MathSciNet  Google Scholar 

  41. D. Cheng, W. P. Dayawansa, and C. F. Martin, “Observability of systems on Lie groups and coset spaces,” SIAM J. Control Optim., 28, 570–581 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  42. I. Chong and J. D. Lawson, “Problems on semigroup and control,” Semigroup Forum, 41, 245–252 (1990).

    Article  MathSciNet  Google Scholar 

  43. P. Crouch and F. Silva Leite, “On the uniform finite generation of SO(n; ℝ),” Syst. Contr. Letters, 2, 341–347 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  44. P. Crouch and C. I. Byrnes, “Symmetries and local controllability,” in: Algebraic and Geometric Methods in Nonlinear Control Theory, M. Fliess and M. Hazewinkel, eds., Reidel Publishing Company, Holland (1986).

    Google Scholar 

  45. D. Elliott and T. Tarn, “Controllability and observability for bilinear systems,” in: SIAM National Meeting, Seattle, Washington (1971).

  46. M. J. Enos, “Controllability of a system of two symmetric rigid bodies in three space,” SIAM J. Control Optim., 32, 1170–1185 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  47. J. P. Gauthier, Structures des Systemes Nonlineares, GNRS, Paris (1984).

    Google Scholar 

  48. J. P. Gauthier and G. Bornard, “Contrôlabilité des systèmes bilinèaires,” SIAM J. Control Optim., 20, No. 3, 377–384 (1982).

    Article  MATH  MathSciNet  Google Scholar 

  49. J. P. Gauthier, I. Kupka and G. Sallet, “Controllability of right invariant systems on real simple Lie groups,” Syst. Contr. Lett., 5, 187–190 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  50. R. Hermann, “On the accessibility problem in control theory,” in: International Symposium on Nonlinear Differential Equations and Nonlinear Mechanics, Academic Press, New York (1963), pp. 325–332.

    Google Scholar 

  51. H. Hermes, “On local and global controllability,” SIAM J. Control, 12, 252–261 (1974).

    Article  MATH  MathSciNet  Google Scholar 

  52. H. Hermes, “Controlled stability,” Ann. Mat. Pura Appl., CXIV, 103–119 (1977).

    MathSciNet  Google Scholar 

  53. H. Hermes, “On local controllability,” SIAM J. Control Optim., 20, 211–220 (1982).

    Article  MATH  MathSciNet  Google Scholar 

  54. H. Hermes and M. Kawski, “Local controllability of a single-input, affine system,” in: Proc. 7th Int. Conf. Nonlinear Analysis, Dallas (1986).

  55. J. Hilgert, “Maximal semigroups and controllability in products of Lie groups,” Arch. Math., 49, 189–195 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  56. J. Hilgert, “Controllability on real reductive Lie groups,” Math Z., 209, 463–466 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  57. J. Hilgert, K. H. Hofmann and J. D. Lawson, “Controllability of systems on a nilpotent Lie group,” Beiträge Algebra Geometrie, 20, 185–190 (1985).

    MATH  MathSciNet  Google Scholar 

  58. J. Hilgert, K. H. Hofmann and J. D. Lawson, Lie Groups, Convex Cones, and Semigroups, Oxford University Press (1989).

  59. J. Hilgert and K. H. Neeb, “Lie semigroups and their applications,” Lect. Notes Math., 1552 (1993).

  60. M. W. Hirsch, “Convergence in neural nets,” in: Proc. Int. Conf. Neural Networks, Vol. II (1987), pp. 115–125.

  61. R. M. Hirschorn, “Invertibility of control systems on Lie groups,” SIAM J. Contr. Optim., 15, 1034–1049 (1977).

    Article  MATH  MathSciNet  Google Scholar 

  62. K. H. Hofmann, “Lie algebras with subalgebras of codimension one,” Ill. J. Math., 9, 636–643 (1965).

    MATH  Google Scholar 

  63. K. H. Hofmann, “Hyperplane subalgebras of real Lie algebras,” Geom. Dedic., 36, 207–224 (1990).

    MATH  Google Scholar 

  64. K. H. Hofmann, “Compact elements in solvable real Lie algebras,” Seminar Sophus Lie (Lie theory), 2, 41–55 (1992).

    MATH  Google Scholar 

  65. K. H. Hofmann, “Memo to Yurii Sachkov on Hyperplane Subalgebras of Lie Algebras,” E-mail message, March (1996).

  66. K. H. Hofmann and J. D. Lawson, “Foundations of Lie semigroups,” Lect. Notes Math., 998, 128–201 (1983).

    MathSciNet  Google Scholar 

  67. K. R. Hunt, “Controllability of nonlinear hypersurface systems,” in: C. I. Byrnes and C. F. Martin, eds., Algebraic and Geometric Methods in Linear Systems Theory, AMS, Providence, Rhode Island (1980).

    Google Scholar 

  68. K. R. Hunt, “n-Dimensional controllability with (n−1) controls,” IEEE Trans. Autom. Control, 27, 113–117 (1982).

    Article  MATH  Google Scholar 

  69. N. Imbert, M. Clique, and A.-J. Fossard, “Un critère de gouvernabilite des systèmes bilinéaires,” R.A.I.R.O., 3, 55–64 (1975).

    MathSciNet  Google Scholar 

  70. A. Isidori, Nonlinear Control Systems. An Introduction, Springer, Berlin (1989).

    Google Scholar 

  71. N. Jacobson, Lie Algebras, Interscience Publishers, New York-London (1962).

    MATH  Google Scholar 

  72. I. Joo, N. M. Tuan, “On controllability of some bilinear systems,” C. R. Acad. Sci., Ser. I, 315, 1393–1398 (1992).

    MATH  MathSciNet  Google Scholar 

  73. A. Joseph, “The minimal orbit in a simple Lie algebra and its associated maximal ideal,” Ann. Sci. l'École Norm. Sup., 9, No. 1, 1–29 (1976).

    MATH  Google Scholar 

  74. V. Jurdjevic, On the reachability properties of curves in ℝn with prescribed curvatures, University of Bordeaux Publ. 1, No. 8009 (1980).

  75. V. Jurdjevic, “Optimal control problems on Lie groups,” in: Analysis of Controlled Dynamical Systems, Proc. Confer., Lyon, France, July 1990, B. Bonnard, B. Bride, J. P. Gauthier, and I. Kupka, eds., pp. 274–284.

  76. V. Jurdjevic, “The geometry of the plate-ball problem,” Arch. Rat. Mech. Anal., 124, 305–328 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  77. V. Jurdjevic, “Optimal control problems on Lie groups: Crossroads between geometry and mechanics,” in: Geometry of Feedback and Optimal Control, B. Jukubczyk and W. Respondek, eds., Marcel Dekker, New York (1993).

    Google Scholar 

  78. V. Jurdjevic, “Non-Euclidean elastica,” Amer. J. Math., 117, 93–124 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  79. V. Jurdjevic, Geometric Control Theory, Cambridge University Press (1997).

  80. V. Jurdjevic and I. Kupka, “Control systems subordinated to a group action: Accessibility,” J. Differ. Equat., 39, 186–211 (1981).

    Article  MATH  MathSciNet  Google Scholar 

  81. V. Jurdjevic and I. Kupka, “Control systems on semi-simple Lie groups and their homogeneous spaces,” Ann. Inst. Fourier, Grenoble, 31, No. 4, 151–179 (1981).

    MATH  MathSciNet  Google Scholar 

  82. V. Jurdjevic and G. Sallet, “Controllability properties of affine systems,” SIAM J. Control, 22, 501–508 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  83. V. Jurdjevic and H. Sussmann, “Control systems on Lie groups,” J. Diff. Equat., 12, 313–329 (1972).

    Article  MATH  MathSciNet  Google Scholar 

  84. M. Kawski, Nilpotent Lie Algebras of Vector Fields and Local Controllability of Nonlinear Systems, Ph.D. Dissertation, Univ. of Colorado, Boulder (1986).

    Google Scholar 

  85. D. E. Koditschek and K. S. Narendra, “The controllability of planar bilinear systems,” IEEE Trans. Autom. Control. 30, 87–89 (1985).

    Article  MathSciNet  Google Scholar 

  86. A. Krener, “A generalization of Chow’s theorem and the Bang-Bang theorem to non-linear control problems,” SIAM J. Control, 12, 43–51 (1974).

    Article  MATH  MathSciNet  Google Scholar 

  87. P. S. Krishnaprasad and D. P. Tsakiris, “G-suakes: Nonholonomic kinematic chains on Lie groups,” Proc. 33rd IEEE Conf. Decis. Control, Lake Buena Vista, FL (1994), pp. 2955–2960.

  88. P. S. Krishnaprasad and D. P. Tsakiris, “Oscillations, SE(2)-snakes and motion control,” Proc. 34th IEEE Conf. Decis. and Control, New Orleans, Louisiana (1995).

  89. J. Kučera, “Solution in the large of the control system =(Au+Bu)x,” Czech. Math. J., 16, 600–623 (1966).

    Google Scholar 

  90. J. Kučera, “Solution in the large of the control system =(Au+Bu)x,” Czech. Math. J., 17, 91–96 (1967).

    Google Scholar 

  91. J. Kučera, “On the accessibility of bilinear systems,” Czech. Math. J., 20, 160–168 (1970).

    Google Scholar 

  92. I. Kupka, “Applications of semigroups to geometric control theory,” in: The Analytical and Topological Theory of Semigroups—Trends and Developments, K. H. Hofmann, J. D. Lawson, and J. S. Pym, eds., de Gruyter Expositions in Mathematics, 1 (1990), pp. 337–345.

  93. M. Kuranishi, “On everywhere dense imbedding of free groups in Lie groups,” Nagoya Math. J., 2 63–71 (1951).

    MATH  MathSciNet  Google Scholar 

  94. J. D. Lawson, “Maximal subsemigroups of Lie groups that are total,” Proc. Edinburgh Math. Soc., 30, 479–501 (1985).

    Article  MathSciNet  Google Scholar 

  95. N. Levitt and H. J. Sussmann, “On controllability by means of two vector fields,” SIAM J. Control, 13, 1271–1281 (1975).

    Article  MATH  MathSciNet  Google Scholar 

  96. N. L. Lepe, “Geometric method of investigation of controllability of two-dimensional bilinear systems,” Avtomat. Telemekh., No. 11, 19–25 (1984).

    MathSciNet  Google Scholar 

  97. C. Lobry, “Contrôllabilité des systèmes non linéaires,” SIAM J. Control, 8, 573–605 (1970).

    Article  MATH  MathSciNet  Google Scholar 

  98. C. Lobry, “Controllability of non linear systems on compact manifolds,” SIAM J. Control, 12, 1–4 (1974).

    Article  MATH  MathSciNet  Google Scholar 

  99. C. Lobry, “Critères de gouvernabilite des asservissements non linéaires,” R.A.I.R.O., 10, 41–54 (1976).

    MathSciNet  Google Scholar 

  100. L. Markus, “Controllability of multi-trajectories on Lie groups,” Lect. Notes Math., 898, 250–256 (1981).

    MathSciNet  Google Scholar 

  101. D. Mittenhuber, “Kontrolltheorie auf Lie-Gruppen,” Seminar Sophus Lie, 1, 185–191 (1991).

    MATH  MathSciNet  Google Scholar 

  102. D. Mittenhuber, “Semigroups in the simply connected covering of SL(2)”, Semigroup Forum, 46, 379–387 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  103. D. Mittenhuber, “Control theory on Lie groups, Lie semigroups and the globality of Lie wedges,” Ph.D. Dissertation, TH Darmstadt (1994).

  104. F. Monroy-Pérez, “Non-Euclidean Dubins' problem,” J. Dyn. Cont. Syst., 4, 249–272 (1998).

    Article  MATH  Google Scholar 

  105. D. Montgomery and H. Samelson, “Transformation groups of spheres,” Ann. Math., 44, 454–470 (1943).

    Article  MathSciNet  Google Scholar 

  106. N. E. Leonard, “Averaging and motion control of systems on Lie groups,” Ph.D. dissertation, Univ. Maryland, College Park, MD (1994).

    Google Scholar 

  107. N. E. Leonard and P. S. Krishnaprasad, “Control of switched electrical networks using averaging on Lie groups,” Proc. 33rd IEEE Conf. Decis. Control, Lake Buena Vista, FL (1994), pp. 1919–1924.

  108. N. E. Leonard and P. S. Krishnaprasad, “Motion control of drift-free, left-invariant systems on Lie groups,” IEEE Trans. Autom. Control, 40, 1539–1554 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  109. M. Lovric, “Left-invariant control systems on Lie groups,” Preprint F193-CT03, January 1993, The Fields Institute for Research in Mathematical Sciences, Canada.

    Google Scholar 

  110. K.-H. Neeb, “Semigroups in the universal covering of SL(2),” Semigroup Forum, 40, 33–43 (1990).

    Google Scholar 

  111. U. Piechottka, “Comments on ‘The controllability of planar bilinear systems,” IEEE Trans. Autom. Control, 35, 767–768 (1990).

    Article  MATH  Google Scholar 

  112. U. Piechottka and P. M. Frank, “Controllability of bilinear systems: A survey and some new results,” in: Nonlinear Control Systems Design, A Isidori, ed., Pergamon Press (1990), pp. 12–28.

  113. R. E. Rink and R. R. Möhler, “Completely controllable bilinear systems,” SIAM, J. Control, 6, 477–486 (1986).

    Article  Google Scholar 

  114. Yu. L. Sachkov, “Controllability of three-dimensional bilinear systems,” Vestn. MGU, Mat., Mekh., No. 4, 26–30 (1991).

    MathSciNet  Google Scholar 

  115. Yu. L. Sachkov, “Invariant domains of three-dimensional bilinear systems,” Vestn. MGU, Mat., Mekh., No. 2, 361–363 (1993).

    MathSciNet  Google Scholar 

  116. Yu. L. Sachkov, “Positive orthant controllability of 2-dimensional and 3-dimensional bilinear systems,” Diff. Uravn., No. 2, 361–363 (1993).

    MathSciNet  Google Scholar 

  117. Y. L. Sachkov, “Positive orthant controllability of single-input bilinear systems,” Mat. Zametki, 85, 419–424 (1995).

    MathSciNet  Google Scholar 

  118. Yu. L. Sachkov, “Controllability of hypersurface and solvable invariant systems,” J. Dyn. Control Syst., 2, No. 1, 55–67 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  119. Yu. L. Sachkov, “On positive orthant controllability of bilinear systems in small codimensions,” SIAM J. Control Opt., 35, 29–35 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  120. Yu. L. Sachkov, “Controllability of right-invariant systems on solvable Lie groups,” J. Dyn. Control Syst., 3, No. 4, 531–564 (1997).

    MATH  MathSciNet  Google Scholar 

  121. Yu. L. Sachkov, “On invariant orthants of bilinear systems,” J. Dyn. Control Syst., 4, No. 1, 137–147 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  122. Yu. L. Sachkov, “Survey on controllability of invariant systems on solvable Lie Groups,” in: Proc. AMS Summer Research Institute on Differential Geometry and Control, Boulder, Colorado, July 1997, to appear.

  123. Yu. L. Sachkov, “Classification of controllability in small-dimensional solvable Lie algebras” (in preparation).

  124. G. Sallet, “Une condition suffisante de complète contrôlabilité dans le groupe des déplacements de ℝnC. R. Acad. Sc. Paris, Série A, 282, 41–44 (1976).

    MATH  MathSciNet  Google Scholar 

  125. G. Sallet, “Complete controllabilite sur les groupes lineaires,” in: Qutils Modeles Math. Autom. Anal. Syst. Trait Signal, Vol. 1, Paris (1981), pp. 215–227.

  126. G. Sallet, “Extension techniques,” in: Systems and Control Encyclopedia II (1987), pp. 1581–1583.

  127. G. Sallet, “Lie groups: Controllability,” in: Systems and Control Encyclopedia (1987), pp. 2756–2759.

  128. H. Samelson, “Topology of Lie groups,” Bull. Amer. Math. Soc., 58, 2–37 (1952).

    Article  MATH  MathSciNet  Google Scholar 

  129. L. A. B. San Martin, “Invariant control sets on flag manifolds,” Math. Control Signals Systems, 6, 41–61 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  130. L. A. B. San Martin and P. A. Tonelli, “Semigroup actions on homogeneous spaces,” Semigroup Forum, 14, 1–30 (1994).

    Google Scholar 

  131. A. Sarti, G. Walsh, and S. Sastry, “Steering left-invariant control systems on matrix Lie groups,” in: Proc. 32nd IEEE Conf. Decis. Control, San Antonio, Texas (1993), pp. 3117–3121.

  132. F. Silva Leite, “Uniform controllable sets of left-invariant vector fields on compact Lie groups,” Syst. Contr. Lett., 6, 329–335 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  133. F. Silva Leite, “Uniform controllable sets of left-invariant vector fields on noncompact Lie groups,” Syst. Contr. Lett., 7, 213–216 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  134. F. Silva Leite, “Pairs of generators for compact real forms of the classical Lie algebras,” Linear Algebra Appl., 121, 123–133 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  135. F. Silva Leite, “Bounds on the order of generation of SO(n;ℝ) by one-parameter subgroups,” Rocky Mount. J. Math., 21, 879–911 (1991).

    MATH  MathSciNet  Google Scholar 

  136. F. Silva Leite and P. Crouch, “Controllability on classical Lie groups,” Math. Control Signals Systems, 1, 31–42 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  137. G. Stefani, “On the local controllability of a scalar-input system,” in: Theory and Applications of Nonlinear Control Systems, C. I. Byrnes and A. Lindquist, eds., Elsevier (1986).

  138. H. J. Sussmann, “The ‘Bang-Bang’ problem for certain control systems on GL(n;ℝ),” SIAM J. Control, 10, 470–476 (1972).

    Article  MATH  MathSciNet  Google Scholar 

  139. H. J. Sussmann and V. Jurdjevic, “Controllability of non-linear systems,” J. Diff. Equat., 12, 95–116 (1972).

    Article  MATH  MathSciNet  Google Scholar 

  140. H. J. Sussmann, “Orbits of families of vector fields and integrability of distributions,” Trans. Amer. Math. Soc., 180, 171–188 (1973).

    Article  MATH  MathSciNet  Google Scholar 

  141. H. J. Sussmann, “Lie brackets, real analyticity and geometric control,” in: Differential Geometric Control Theory, R. W. Brockett, R. S. Millmann, and H. J. Sussmann, eds., Birkhäuser, Boston-Basel-Stuttgart (1983), pp. 1–116.

    Google Scholar 

  142. H. J. Sussmann, “A general theorem on local controllability,” SIAM J. Control Optim., 25, 158–194 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  143. A. I. Tretyak, “Sufficient conditions for local controllability and high-order necessary conditions for optimality. A differential-geometric approach,” in: Progress in Science and Technology, Series on Mathematics and Its Applications. Thematical Surveys, Vol. 24, Dynamical Systems-4 [in Russian], All-Russian Institute for Scientific and Technical Information (VINITI), Ross. Akad. Nauk (1996).

  144. S. A. Vakhrameev, “Geometrical and topological methods in optimal control theory,” J. Math. Sci., 76, No. 5, 2555–2719 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  145. S. A. Vakhrameev and A. V. Sarychev, “Geometrical control theory,” in: Progress in Science and Technology, series on Algebra, Topology, and Geometry. Thematical Surveys, Vol. 23 [in Russian], All-Russian Institute for Scientific and Technical Information (VINITI), Ross. Akad. Nauk (1985), pp. 197–280.

  146. V. S. Varadarjan, Lie Groups, Lie Algebras, and Their Representations, Springer-Verlag, New York-Berlin-Heidelberg-Tokyo (1984).

    Google Scholar 

  147. E. B. Vinberg and A. L. Onishchik, Seminar on Lie Groups and Algebraic Groups [in Russian], Moscow (1988).

  148. E. B. Vinberg, V. V. Gorbatcevich, and A. L. Onishchik, “Construction of Lie groups and Lie algebras,” in: Progress in Science and Technology, Series on Complementary Problems in Mathematics, Basic Directions, Vol. 41, All-Russian Institute for Scientific and Technical Information (VINITI), Ross. Akad. Nauk (1989).

  149. G. Walsh, R. Montgomery, and S. Sastry, “Optimal path planning on matrix Lie groups”, Proc. 33rd IEEE Conf. Decis. and Control, Lake Buena Vista, FL (1994), pp. 1312–1318.

  150. G.N. Yakovenko, “Optimal control synthesis on a third-order Lie group”, Kybern. Vychisl. Tekh. (Kiev), 51, 17–22 (1981).

    MathSciNet  Google Scholar 

  151. G.N. Yakovenko, “Control on Lie groups: First integrals, singular controls”, Kybern. Vychisl. Tekh. (Kiev), 62, 10–20 (1984).

    MATH  MathSciNet  Google Scholar 

  152. V.A. Yatcenko, “Euler equation on Lie groups and optimal control of bilinear systems”, Kybern. Vychisl. Tekh. (Kiev), 58, 78–80 (1983).

    Google Scholar 

  153. M.I. Zelikin, “Optimal trajectories synthesis on representation spaces of Lie groups”, Mat. Sb., 132, 541–555 (1987).

    Google Scholar 

  154. M.I. Zelikin, “Group symmetry in degenerate extremal problems”, Usp. Mat. Nauk, 43, No. 2, 139–140 (1988).

    MATH  MathSciNet  Google Scholar 

  155. M.I. Zelikin, “Optimal control of a rigid body rotation”, Dokl. Ross. Akad. Nauk, 346, 334–336 (1996).

    Google Scholar 

  156. M.I. Zelikin, “Totally extremal manifolds for optimal control problems”, in: Semigroups in Algebra, Geometry and Analysis, Hofmann, Lawson, and Vinberg, eds., Walter de Gruyter & Co., Berlin-New York (1995), pp. 339–354.

    Google Scholar 

Download references

Authors

Additional information

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya, Tematicheskie Obzory. Vol. 59, Dinamicheskie Sistemy-8, 1998.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sachkov, Y.L. Controllability of invariant systems on lie groups and homogeneous spaces. J Math Sci 100, 2355–2427 (2000). https://doi.org/10.1007/s10958-000-0002-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-000-0002-8

Keywords

Navigation