Skip to main content
Log in

Subdifferentials and Coderivatives of Efficient Point Multifunctions in Parametric Convex Vector Optimization

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript


In this paper, by revisiting coderivative calculus rules for convex multifunctions in finite-dimensional spaces, we derive formulae for estimating/computing the basic subdifferential and the coderivative of the efficient point multifunction of parametric convex vector optimization problems. These results are then applied to a broad class of conventional convex vector optimization problems with the presence of operator constraints and equilibrium ones. Examples are also designed to analyze and illustrate the obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

There is no data included in this paper.


  1. Aubin, J.P., Frankowska, H.: Set-Valued Analysis. Springer, Boston (1990)

    Google Scholar 

  2. An, D.T.V., Tung, L.T.: Sensitivity analysis in parametric convex vector optimization (2023).

  3. Bao, T.Q., Mordukhovich, B.S.: Variational principles for set-valued mappings with applications to multiobjective optimization. Control Cybern. 36, 531–562 (2007)

    MathSciNet  Google Scholar 

  4. Bao, T.Q., Mordukhovich, B.S.: Necessary conditions for super minimizers in constrained multiobjective optimization. J. Glob. Optim. 43, 533–552 (2009)

    Article  MathSciNet  Google Scholar 

  5. Benson, H.P.: On a domination property for vector maximization with respect to cones. J. Optim. Theory Appl. 39, 125–132 (1983)

    Article  MathSciNet  Google Scholar 

  6. Chuong, T.D., Yao, J.-C.: Generalized Clarke epiderivatives of parametric vector optimization problems. J. Optim. Theory Appl. 146, 77–94 (2010)

    Article  MathSciNet  Google Scholar 

  7. Chuong, T.D.: Clarke coderivatives of efficient point multifunctions in parametric vector optimization. Nonlinear Anal. 74, 273–285 (2011)

    Article  MathSciNet  Google Scholar 

  8. Chuong, T.D., Yao, J.-C.: Coderivatives of efficient point multifunctions in parametric vector optimization. Taiwanese J. Math. 13, 1671–1693 (2009)

    Article  MathSciNet  Google Scholar 

  9. Chuong, T.D., Yao, J.-C.: Fréchet subdifferentials of efficient point multifunctions in parametric vector optimization. J. Glob. Optim. 57, 1229–1243 (2013)

    Article  Google Scholar 

  10. Chuong, T.D.: Normal subdifferentials of efficient point multifunctions in parametric vector optimization. Optim. Lett. 7, 1087–1117 (2013)

    Article  MathSciNet  Google Scholar 

  11. Dontchev, A.L., Rockafellar, R.T.: Implicit Functions and Solution Mappings, 2nd edn. Springer, New York (2014)

    Book  Google Scholar 

  12. Kim, D.S., Mordukhovich, B.S., Pham, T.S., Tuyen, N.V.: Existence of efficient and properly efficient solutions to problems of constrained vector optimization. Math. Program. 190, 259–283 (2021)

    Article  MathSciNet  Google Scholar 

  13. Kuk, H., Tanino, T., Tanaka, M.: Sensitivity analysis in parametrized convex vector optimization. J. Math. Anal. Appl. 202, 511–522 (1996)

    Article  MathSciNet  Google Scholar 

  14. Lee, G.M., Huy, N.Q.: On sensitivity analysis in vector optimization. Taiwan. J. Math. 11, 945–958 (2007)

    Article  MathSciNet  Google Scholar 

  15. Li, S., Penot, J.-P., Xue, X.: Codifferential calculus. Set Valued Var. Anal. 19, 505–536 (2011)

    Article  MathSciNet  Google Scholar 

  16. Luc, D.T.: Theory of Vector Optimization. Springer-Verlag, Berlin (1989)

    Book  Google Scholar 

  17. Mordukhovich, B.S.: Metric approximations and necessary optimality conditions for general classes of nonsmooth extremal problems. Sov. Math. Dokl. 22, 526–530 (1980)

    Google Scholar 

  18. Mordukhovich, B.S.: Complete characterization of openness, metric regularity, and Lipschitzian properties of multifunctions. Trans. Am. Math. Soc. 340, 1–35 (1993)

    Article  MathSciNet  Google Scholar 

  19. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation. Volume I: Basic Theory, Volume II: Applications. Springer, Berlin (2006)

  20. Mordukhovich, B.S.: Variational Analysis and Applications. Springer, Switzerland (2018)

    Book  Google Scholar 

  21. Mordukhovich, B.S, Nam, N.M.: Convex Analysis and Beyond: Volume I: Basic Theory. Springer Series in Operations Research and Financial Engineering (2022)

  22. Mordukhovich, B.S., Nam, N.M.: An Easy Path to Convex Analysis and Applications, 2nd edn. Synthesis Lectures on Mathematics & Statistics. Springer, Switzerland (2023)

  23. Mordukhovich, B.S., Nam, N.M., Rector, R.B., Tran, T.: Variational geometric approach to generalized differential and conjugate calculi in convex analysis. Set-Valued Var. Anal. 25, 731–755 (2017)

    Article  MathSciNet  Google Scholar 

  24. Mordukhovich, B.S., Nguyen, O.: Subdifferential calculus for ordered multifunctions with applications to set-valued optimization. J. Appl. Numer. Optim. 5, 27–53 (2023)

    Google Scholar 

  25. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    Book  Google Scholar 

  26. Shi, D.S.: Contingent derivative of the perturbation map in multiobjective optimization. J. Optim. Theory Appl. 70, 385–396 (1991)

    Article  MathSciNet  Google Scholar 

  27. Shi, D.S.: Sensitivity analysis in convex vector optimization. J. Optim. Theory Appl. 77, 145–159 (1993)

    Article  MathSciNet  Google Scholar 

  28. Tanino, T.: Sensitivity analysis in multiobjective optimization. J. Optim. Theory Appl. 56, 479–499 (1988)

    Article  MathSciNet  Google Scholar 

  29. Tanino, T.: Stability and sensitivity analysis in convex vector optimization. SIAM J. Control Optim. 26, 521–536 (1988)

    Article  MathSciNet  Google Scholar 

  30. Tanino, T.: Stability and sensitivity analysis in multiobjective nonlinear programming. Ann. Oper. Res. 27, 97–114 (1990)

    Article  MathSciNet  Google Scholar 

  31. Tung, L.T.: On higher-order adjacent derivative of perturbation map in parametric vector optimization. J. Inequal. Appl. Article ID 112 (2016)

  32. Tung, L.T.: On higher-order proto-differentiability of perturbation maps. Positivity 24, 441–462 (2020)

    Article  MathSciNet  Google Scholar 

  33. Tung, L.T.: On higher-order proto-differentiability and higher-order asymptotic proto-differentiability of weak perturbation maps in parametric vector optimization. Positivity 25, 579–604 (2021)

    Article  MathSciNet  Google Scholar 

  34. Veselý, L., Zajíček, L.: Delta-convex mappings between Banach spaces and applications. Dissertationes Mathematicae. Vol. 289. Instytut Matematyczny Polskiej Akademii Nauk, Warszawa (1989)

  35. Xue, X.-W., Li, S.-J., Liao, C.-M., Yao, J.-C.: Sensitivity analysis of parametric vector set-valued optimization problems via coderivatives. Taiwanese J. Math. 15, 2533–2554 (2011)

    Article  MathSciNet  Google Scholar 

Download references


The authors would like to thank the anonymous referees for their careful readings and valuable suggestions which improved the presentation of this manuscript.


This research is funded by Hanoi Pedagogical University 2 Foundation for Sciences and Technology Development under Grant Number HPU2.2023-UT-11.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Nguyen Van Tuyen.

Ethics declarations

Conflict of interest

The authors declare that they have no Conflict of interest.

Additional information

Communicated by Firdevs Ulus.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, D.T.V., Hung, N.H. & Van Tuyen, N. Subdifferentials and Coderivatives of Efficient Point Multifunctions in Parametric Convex Vector Optimization. J Optim Theory Appl (2024).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:


Mathematics Subject Classification