Skip to main content

Advertisement

Log in

Stabilizability for Quasilinear Klein–Gordon–Schrödinger System with Variable Coefficients

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This paper concerns with the stabilizability for a quasilinear Klein–Gordon–Schrödinger system with variable coefficients in dimensionless form. The stabilizability of quaslinear Klein–Gordon-Wave system with the Kelvin–Voigt damping has been considered by Liu–Yan–Zhang (SIAM J Control Optim 61:1651–1678, 2023). Our main contribution is to find a suitable linear feedback control law such that the quasilinear Klein–Gordon–Schrödinger system is exponentially stable under certain smallness conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almeida, A.F., Cavalcanti, M.M., Zanchetta, J.P.: Exponential stability for the coupled Klein–Gordon–Schrödinger equations with locally distributed damping. Evol. Equ. Control Theory 8, 847–865 (2019)

    Article  MathSciNet  Google Scholar 

  2. Alinhac, S.: Existence d’ondes de raréfaction pour des syst\(\grave{e}\)mes quasi-linéaires hyperboliques multidimensionnels. Commun. Partial Differ. Equ. 14, 173–230 (1989)

    Article  Google Scholar 

  3. Alinhac, S., Gérard, P.: Pseudo-Differential Operators and the Nash–Moser Theorem, Graduate Studies in Mathematics, vol. 82. American Mathematical Society, Providence, RI (2007)

    Google Scholar 

  4. Ammari, K., Duyckaerts, T., Shirikyan, A.: Local feedback stabilisation to a non-stationary solution for a damped non-linear wave equation. Math. Control Relat. Fields 6, 1–25 (2016)

    Article  MathSciNet  Google Scholar 

  5. Ammari, K., Hassine, F., Robbiano, L.: Stabilization for the wave equation with singular Kelvin–Voigt damping. Arch. Ration. Mech. Anal. 236, 577–601 (2020)

    Article  MathSciNet  Google Scholar 

  6. Ammari, K., Shel, F., Tebou, L.: Regularity and stability of the semigroup associated with some interacting elastic systems I: a degenerate damping case. J. Evol. Equ. 21, 4973–5002 (2021)

    Article  MathSciNet  Google Scholar 

  7. Bao, W., Zhao, X.: A uniformly accurate (UA) multiscale time integrator fourier pseoduspectral method for the Klein–Gordon–Schrödinger equations in the nonrelativistic limit regime. Numer. Math. 135, 833–873 (2017)

    Article  MathSciNet  Google Scholar 

  8. Bao, W., Dong, X., Wang, S.: Singular limits of Klein–Gordon–Schrödinger equations. Multiscale Model. Simul. 8, 1742–1769 (2010)

    Article  MathSciNet  Google Scholar 

  9. Barbu, V., Lasiecka, I., Triggiani, R.: Abstract settings for tangential boundary stabilization of Navier–Stokes equations by high-and low-gain feedback controllers. Nonlinear Anal. 64, 2704–2746 (2006)

    Article  MathSciNet  Google Scholar 

  10. Bortot, C.A., Souza, T.M., Zanchetta, J.P.: Asymptotic behavior of the coupled Klein–Gordon–Schrödinger systems on compact manifolds. Math. Methods Appl. Sci. 45, 2254–2275 (2022)

    Article  MathSciNet  Google Scholar 

  11. Buffe, R.: Stabilization of the wave equation with Ventcel boundary condition. J. Math. Pures Appl. 108, 207–259 (2017)

    Article  MathSciNet  Google Scholar 

  12. Cavalcanti, M.M., Cavalcanti, V., Frota, C.L., Vicentez, A.: Stability for semilinear wave equation in an inhomogeneous medium with frictional localized damping and acoustic boundary conditions. SIAM J. Control Optim. 58, 2411–2445 (2020)

    Article  MathSciNet  Google Scholar 

  13. Colliander, J., Holmer, J., Tzirakis, N.: Low regularity global well-posedness for the Zakharov and Klein–Gordon–Schrödinger systems. Trans. Am. Math. Soc. 360, 4619–4638 (2008)

    Article  Google Scholar 

  14. Compaan, E.: Smoothing for the Zakharov and Klein–Gordon–Schrödinger systems on Euclidean spaces. SIAM J. Math. Anal. 49, 4206–4231 (2017)

    Article  MathSciNet  Google Scholar 

  15. Coron, J.-M., Gagnon, L., Morancey, M.: Rapid stabilization of a linearized bilinear \(1\)-D Schrödinger equation. J. Math. Pures Appl. 115, 24–73 (2018)

    Article  MathSciNet  Google Scholar 

  16. Coron, J.-M., Xiang, S.Q.: Small-time global stabilization of the viscous Burgers equation with three scalar controls. J. Math. Pures Appl. 151, 212–256 (2021)

    Article  MathSciNet  Google Scholar 

  17. Fukuda, I., Tsutsumi, M.: On coupled Klein–Gordon–Schrödinger equations II. J. Math. Anal. Appl. 66, 358–378 (1978)

    Article  MathSciNet  Google Scholar 

  18. García, A.P., de Teresa, L.: Stabilization and observer design for the wave equation. Automatica 154, 111064 (2023)

    Article  MathSciNet  Google Scholar 

  19. Hörmander, L.: Implicit Function Theorems. Stanford Lecture Notes. Stanford University, Stanford (1977)

    Google Scholar 

  20. Hörmander, L.: Lectures on Nonlinear Hyperbolic Differential Equations. Springer, Berlin (1997)

    Google Scholar 

  21. Klainerman, S.: Global existence for nonlinear wave equations. Commun. Pure Appl. Math. 33, 43–101 (1980)

    Article  MathSciNet  Google Scholar 

  22. Laurent, C., Rosier, L., Zhang, B.Y.: Control and stabilization of the Korteweg–de Vries equation on a periodic domain. Commun. Partial Differ. Equ. 35, 707–744 (2010)

    Article  MathSciNet  Google Scholar 

  23. Li, S.G., Chen, M., Zhang, B.Y.: Controllability and stabilizability of a higher order wave equation on a periodic domain. SIAM J. Control Optim. 58, 1121–1143 (2020)

    Article  MathSciNet  Google Scholar 

  24. Li, W.J., Liu, J., Yan, W.P.: Global stability dynamics of the quasilinear damped Klein–Gordon equation with variable coefficients. J. Geom. Anal. 33, 122 (2023)

    Article  MathSciNet  Google Scholar 

  25. Liu, J., Yan, W.P., Zhang, C.: Stabilizability for a quasilinear Klein–Gordon-wave system with variable coefficients. SIAM J. Control Optim. 61, 1651–1678 (2023)

    Article  MathSciNet  Google Scholar 

  26. Liu, Z.Y., Zhang, Q.: Stability of a string with local Kelvin–Voigt damping and nonsmooth coefficient at interface. SIAM J. Control Optim. 54, 1859–1871 (2016)

    Article  MathSciNet  Google Scholar 

  27. Machtyngier, E., Zuazua, E.: Stabilization of the Schrödinger equation. Portugal. Math. 51, 243–256 (1994)

    MathSciNet  Google Scholar 

  28. Makhankov, V.G.: Dynamics of classical solitons (in non-integrable systems). Phys. Rep. 35, 1–128 (1978)

    Article  MathSciNet  Google Scholar 

  29. Missaoui, S.: Regularity of the attractor for a coupled Klein–Gordon–Schrödinger system in \(\mathbb{R} ^3\) nonlinear KGS system. Commun. Pure Appl. Anal. 21, 567–584 (2022)

    Article  MathSciNet  Google Scholar 

  30. Moser, J.: A rapidly converging iteration method and nonlinear partial differential equations I-II. Ann. Scuola Norm. Sup. Pisa. 20(265–313), 499–535 (1966)

    Google Scholar 

  31. Nash, J.: The embedding for Riemannian manifolds. Ann. Math. 63, 20–63 (1956)

    Article  MathSciNet  Google Scholar 

  32. Pecher, H.: Some new well-posedness results for the Klein–Gordon–Schrödinger system. Differ. Integral Equ. 25, 117–142 (2012)

    Google Scholar 

  33. Pecher, H.: Well-posedness results for a generalized Klein–Gordon–Schrödinger system. J. Math. Phys. 60(10), 101510 (2019)

    Article  MathSciNet  Google Scholar 

  34. Rabinowitz, P.: A rapid convergence method and a singular perturbation problem. Ann. Inst. Henri Poincaré. 1, 1–17 (1984)

    Article  MathSciNet  Google Scholar 

  35. Rosier, L., Zhang, B.Y.: Local exact controllability and stabilizability of the nonlinear Schrödinger equation on a bounded interval. SIAM J. Control Optim. 48, 972–992 (2009)

    Article  MathSciNet  Google Scholar 

  36. Sogge, C.D.: Lectures on Nonlinear Wave Equations. Monographs in Analysis, vol. II. International Press, Boston

  37. Wang, M., Zhou, Y.: The periodic wave solutions for the Klein–Gordon–Schrödinger equations. Phys. Lett. A. 318, 84–92 (2003)

    Article  MathSciNet  Google Scholar 

  38. Wang, T.: Optimal point-wise error estimate of a compact difference scheme for the Klein–Gordon–Schrödinger equation. J. Math. Anal. Appl. 412, 155–167 (2014)

    Article  MathSciNet  Google Scholar 

  39. Webler, C.M., Zanchetta, J.P.: Exponential stability for the coupled Klein–Gordon–Schrödinger equations with locally distributed damping in unbounded domains. Asymptot. Anal. 123(3–4), 289–315 (2021)

    MathSciNet  Google Scholar 

  40. Yan, W.P.: The motion of closed hypersurfaces in the central force field. J. Differ. Equ. 261, 1973–2005 (2016)

    Article  MathSciNet  Google Scholar 

  41. Yan, W.P.: Dynamical behavior near explicit self-similar blow up solutions for the Born-Infeld equation. Nonlinearity 32, 4682–4712 (2019)

    Article  MathSciNet  Google Scholar 

  42. Yan, W.P.: Nonlinear stability of explicit self-similar solutions for the timelike extremal hypersurfaces in \({\mathbb{R} }^{1+3}\). Calc. Var. Partial Differ. Equ. 59, 124 (2020)

    Article  Google Scholar 

  43. Yan, W.P.: Asymptotic stability of explicit blowup solutions for three-dimensional incompressible magnetohydrodynamics equations. J. Geom. Anal. 31, 12053–12097 (2021)

    Article  MathSciNet  Google Scholar 

  44. Yan, W.P.: Construction of a family of stable finite-time blowup solutions for the viscous Boussinesq system. Ann. Henri Poincaré. 24, 1971–2003 (2023)

    Article  MathSciNet  Google Scholar 

  45. Yan, W.P., Liu, J., Li, W.J.: Dynamics of the closed hypersurfaces in central force fields. Math. Ann. (2023). https://doi.org/10.1007/s00208-023-02676-w

    Article  Google Scholar 

  46. Yu, K., Han, Z.J.: Stabilization of wave equation on cuboidal Domain via Kelvin–Voigt damping: a case without geometric control condition. SIAM J. Control Optim. 59, 1973–1988 (2021)

    Article  MathSciNet  Google Scholar 

  47. Zakharov, V.E.: Collapse of Languvov waves. Soy. Phys. JETP 35, 908–912 (1972)

    Google Scholar 

  48. Zhang, Y.L., Zhu, M., Li, D.H., Wang, J.M.: Dynamic feedback stabilization of an unstable wave equation. Automatica 121, 109165 (2020)

    Article  MathSciNet  Google Scholar 

  49. Zhang, Y.L., Zhu, M., Li, D.H., Wang, J.M.: Stabilization of two coupled wave equations with joint anti-damping and non-collocated control. Automatica 135, 109995 (2022)

    Article  MathSciNet  Google Scholar 

  50. Zhao, X.F., Li, W.J., Yan, W.P.: Global Sobolev regular solution for Boussinesq system. Adv. Nonlinear Anal. 12, 24 (2023)

    MathSciNet  Google Scholar 

  51. Zuazua, E.: Exponential decay for the semilinear wave equation with locally distributed damping. Commun. Partial Differ. Equ. 15, 205–235 (1990)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are very grateful to the anonymous referees made numerous suggestions for improving the presentation. This work is supported by Guangxi science and technology department specific research project of Guangxi for research bases and talents (Guike AD23026076) and NSFC No 12161006 and Guangxi Natural Science Foundation No. 2021JJG110002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiping Yan.

Additional information

Communicated by Enrique Zuazua.

Dedicated to Professor Vicenţiu D. Rădulescu on the occasion of his 65th birthday.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Shangguan, Y. & Yan, W. Stabilizability for Quasilinear Klein–Gordon–Schrödinger System with Variable Coefficients. J Optim Theory Appl (2024). https://doi.org/10.1007/s10957-024-02445-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10957-024-02445-y

Keywords

Mathematics Subject Classification

Navigation