Skip to main content
Log in

Catching-Up Algorithm with Approximate Projections for Moreau’s Sweeping Processes

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we develop an enhanced version of the catching-up algorithm for sweeping processes through an appropriate concept of approximate projection. We establish some properties of this notion of approximate projection. Then, under suitable assumptions, we show the convergence of the enhanced catching-up algorithm for prox-regular, subsmooth, and merely closed sets. Finally, we briefly discuss some efficient numerical methods for obtaining approximate projections. Our results recover classical existence results in the literature and provide new insights into the numerical simulation of sweeping processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acary, V., Bonnefon, O., Brogliato, B.: Nonsmooth Modeling and Simulation for Switched Circuits. Springer, Berlin (2011)

    Book  Google Scholar 

  2. Adly, S., Haddad, T.: Well-posedness of nonconvex degenerate sweeping process via unconstrained evolution problems. Nonlinear Anal. Hybrid Syst. 36, 100832 (2020)

    Article  MathSciNet  Google Scholar 

  3. Aliprantis, C.D., Border, K.C.: Infinite Dimensional Analysis, 3rd edn. Springer, Berlin (2006)

    Google Scholar 

  4. Aussel, D., Daniilidis, A., Thibault, L.: Subsmooth sets: functional characterizations and related concepts. Trans. Am. Math. Soc. 357(4), 1275–1301 (2005)

    Article  MathSciNet  Google Scholar 

  5. Bomze, I.M., Rinaldi, F., Zeffiro, D.: Frank–Wolfe and friends: a journey into projection-free first-order optimization methods. 4OR 19(3), 313–345 (2021)

    Article  MathSciNet  Google Scholar 

  6. Borwein, J.M., Preiss, D.: A smooth variational principle with applications to subdifferentiability and to differentiability of convex functions. Trans. Am. Math. Soc. 303(2), 517–527 (1987)

    Article  MathSciNet  Google Scholar 

  7. Bounkhel, M., Thibault, L.: On various notions of regularity of sets in nonsmooth analysis. Nonlinear Anal. 48(2), 223–246 (2002)

    Article  MathSciNet  Google Scholar 

  8. Bounkhel, M., Thibault, L.: Nonconvex sweeping process and prox-regularity in Hilbert space. J. Nonlinear Convex Anal. 6(2), 359–374 (2005)

    MathSciNet  Google Scholar 

  9. Brogliato, B.: Nonsmooth Mechanics (Communications in Numerical Methods in Engineering), 3rd edn. Springer, Berlin (2016)

    Google Scholar 

  10. Clarke, F.: Optimization and Nonsmooth Analysis. Wiley Intersciences, New York (1983)

    Google Scholar 

  11. Clarke, F., Ledyaev, Y., Stern, R., Wolenski, P.: Nonsmooth Analysis and Control Theory (Graduate Texts in Mathematics), vol. 178. Springer, New York (1998)

    Google Scholar 

  12. Colombo, G., Thibault, L.: Prox-regular sets and applications. In: Gao, D.Y., Motreanu, D. (eds.) Handbook of Nonconvex Analysis and Applications, pp. 99–182. Int. Press, Somerville (2010)

    Google Scholar 

  13. Combettes, C.W., Pokutta, S.: Complexity of linear minimization and projection on some sets. Oper. Res. Lett. 49(4), 565–571 (2021)

    Article  MathSciNet  Google Scholar 

  14. Dadush, D., Hojny, C., Huiberts, S., Weltge, S.: A simple method for convex optimization in the oracle model. In: International Conference on Integer Programming and Combinatorial Optimization, pp. 154–167. Springer (2022)

  15. Deimling, K.: Multivalued Differential Equations, De Gruyter Series in Nonlinear Analysis and Applications, vol. 1. Walter de Gruyter & Co., Berlin (1992)

    Google Scholar 

  16. Ding, L., Udell, M.: Frank–Wolfe style algorithms for large scale optimization. In: Large-Scale and Distributed Optimization. Lecture Notes in Mathematics, vol. 2227, pp. 215–245. Springer, Cham (2018)

  17. Federer, H.: Curvature measures. Trans. Am. Math. Soc. 93, 418–491 (1959)

    Article  MathSciNet  Google Scholar 

  18. Frank, M., Wolfe, P., et al.: An algorithm for quadratic programming. Naval Res. Logist. Q. 3(1–2), 95–110 (1956)

    Article  MathSciNet  Google Scholar 

  19. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization, Algorithms and Combinatorics: Study and Research Texts, vol. 2. Springer, Berlin (1988)

    Book  Google Scholar 

  20. Haddad, T., Noel, J., Thibault, L.: Perturbed sweeping process with a subsmooth set depending on the state. Linear Nonlinear Anal. 2(1), 155–174 (2016)

    MathSciNet  Google Scholar 

  21. Hiriart-Urruty, J.B., López, M.A., Volle, M.: The \(\epsilon \)-strategy in variational analysis: illustration with the closed convexification of a function. Rev. Mat. Iberoam. 27(2), 449–474 (2011)

    Article  MathSciNet  Google Scholar 

  22. Jaggi, M.: Revisiting Frank–Wolfe: projection-free sparse convex optimization. In: Dasgupta, S., McAllester, D. (eds.) Proceedings of the 30th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol. 28, no. 1, pp. 427–435. PMLR, Atlanta, Georgia, USA (2013)

  23. Jourani, A., Vilches, E.: Moreau–Yosida regularization of state-dependent sweeping processes with nonregular sets. J. Optim. Theory Appl. 173(1), 91–116 (2017)

    Article  MathSciNet  Google Scholar 

  24. Maury, B., Venel, J.: Un modéle de mouvement de foule. ESAIM Proc. 18, 143–152 (2007)

    Article  Google Scholar 

  25. Moreau, J.J.: Rafle par un convexe variable I, expo. 15. Sém, Anal. Conv. Mont., pp. 1–43 (1971)

  26. Moreau, J.J.: Rafle par un convexe variable II, expo. 3. Sém, Anal. Conv. Mont., pp. 1–36 (1972)

  27. Nacry, F., Thibault, L.: Distance function associated to a prox-regular set. Set-Valued Var. Anal. 30(2), 731–750 (2022)

    Article  MathSciNet  Google Scholar 

  28. Papageorgiou, N.S., Kyritsi-Yiallourou, S.T.: Handbook of Applied Analysis (Advances in Mechanics and Mathematics), vol. 19. Springer, New York (2009)

    Google Scholar 

  29. Penot, J.P.: Calculus Without Derivatives (Graduate Texts in Mathematics), vol. 266. Springer, New York (2013)

    Book  Google Scholar 

  30. Poliquin, R.A., Rockafellar, R.T., Thibault, L.: Local differentiability of distance functions. Trans. Am. Math. Soc. 352(11), 5231–5249 (2000)

    Article  MathSciNet  Google Scholar 

  31. Thibault, L.: Unilateral Variational Analysis in Banach Spaces. Part II: Special Classes of Functions and Sets. World Scientific, Singapore (2023)

    Google Scholar 

  32. Usmanova, I., Kamgarpour, M., Krause, A., Levy, K.: Fast projection onto convex smooth constraints. In: Meila, M., Zhang, T. (eds.) Proceedings of the 38th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol. 139, pp. 10,476–10,486. PMLR (2021)

  33. Venel, J.: A numerical scheme for a class of sweeping processes. Numer. Math. 118(2), 367–400 (2011)

    Article  MathSciNet  Google Scholar 

  34. Vilches, E.: Existence and Lyapunov pairs for the perturbed sweeping process governed by a fixed set. Set-Valued Var. Anal. 27(2), 569–583 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the Center for Mathematical Modeling (CMM) and ANID-Chile under BASAL funds for Center of Excellence FB210005, Fondecyt Regular 1200283, Fondecyt Regular 1240120 and Fondecyt Exploración 13220097. We also acknowledge ECOS-Anid Project PC23E11 and MathAmsud Project 23-MATH-17. The authors would like to express their sincere gratitude to the anonymous referees for their valuable discussions and insightful suggestions. Their contributions have played a vital role in enhancing the overall quality of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio Vilches.

Additional information

Communicated by Giovanni Colombo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garrido, J.G., Vilches, E. Catching-Up Algorithm with Approximate Projections for Moreau’s Sweeping Processes. J Optim Theory Appl (2024). https://doi.org/10.1007/s10957-024-02407-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10957-024-02407-4

Keywords

Mathematics Subject Classification

Navigation