Skip to main content
Log in

Geometric Programming Problems with Triangular and Trapezoidal Twofold Uncertainty Distributions

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

Geometric programming is a well-known optimization tool for dealing with a wide range of nonlinear optimization and engineering problems. In general, it is assumed that the parameters of a geometric programming problem are deterministic and accurate. However, in the real-world geometric programming problem, the parameters are frequently inaccurate and ambiguous. To tackle the ambiguity, this paper investigates the geometric programming problem in an uncertain environment, with the coefficients as triangular and trapezoidal twofold uncertain variables. In this paper, we introduce uncertain measures in a generalized version and focus on more complicated twofold uncertainties to propose triangular and trapezoidal twofold uncertain variables within the context of uncertainty theory. We develop three reduction methods to convert triangular and trapezoidal twofold uncertain variables into singlefold uncertain variables using optimistic, pessimistic, and expected value criteria. Reduction methods are used to convert the geometric programming problem with twofold uncertainty into the geometric programming problem with singlefold uncertainty. Furthermore, the chance-constrained uncertain-based framework is used to solve the reduced singlefold uncertain geometric programming problem. Finally, a numerical example is provided to demonstrate the effectiveness of the procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated. A random data set is taken for the numerical example given in this paper.

References

  1. Avriel, M., Dembo, R., Passy, U.: Solution of generalized geometric programs. Int. J. Numer. Method Eng. 9, 149–168 (1975)

    Article  MathSciNet  Google Scholar 

  2. Avriel, M., Wilde, D.J.: Engineering design under uncertainty. I &EC Process Des. Dev. 8, 127–131 (1969)

    Google Scholar 

  3. Beightler, C.S., Phillips, D.T.: Applied Geometric Programming. Wiley, New York (1976)

    Google Scholar 

  4. Cao, B.Y.: Extended fuzzy geometric programming. J. Fuzzy Math. 1, 285–293 (1993)

    MathSciNet  Google Scholar 

  5. Cao, B.Y.: Research for a geometric programming model with T-fuzzy variable. J. Fuzzy Math. 5, 625–632 (1997)

    MathSciNet  Google Scholar 

  6. Chassein, A., Goerigk, M.: On the complexity of robust geometric programming with polyhedral uncertainty. Oper. Res. Lett. 47, 21–24 (2019)

    Article  MathSciNet  Google Scholar 

  7. Cheng, T.C.E.: An economic order quantity model with demand-dependent unit production cost and imperfect production process. IIE Trans. 23, 23–28 (1991)

    Article  Google Scholar 

  8. Chiang, M.: Geometric programming for communication systems. Found. Trends Commun. Inf. Theory. 2, 1–154 (2005)

    Article  Google Scholar 

  9. Choi, J.C., Bricker, D.L.: Effectiveness of a geometric programming algorithm for optimization of machining economics models. Comput. Oper. Res. 10, 957–961 (1996)

    Article  Google Scholar 

  10. Chu, C., Wong, D.F.: VLSI circuit performance optimization by geometric programming. Ann. Oper. Res. 105, 37–60 (2001)

    Article  MathSciNet  Google Scholar 

  11. Duffin, R.J., Peterson, E.L., Zener, C.M.: Geometric Programming Theory and Applications. Wiley, New York (1967)

    Google Scholar 

  12. Duffin, R.J., Peterson, E.L.: Geometric programming with signomials. J. Optim. Theory Appl. 11, 3–35 (1973)

    Article  MathSciNet  Google Scholar 

  13. Fang, S.C., Peterson, E.L., Rajasekera, J.R.: Controlled dual perturbations for posynomial programs. Eur. J. Oper. Res. 35, 111–117 (1988)

    Article  MathSciNet  Google Scholar 

  14. Fontem, B.: Robust chance-constrained geometric programming with application to demand risk mitigation. J. Optim. Theory Appl. 197, 765–797 (2023)

    Article  MathSciNet  Google Scholar 

  15. Gupta, N.C.D., Paul, H., Yu, C.H.: An application of geometric programming to structural design. Comput. Struct. 22, 965–971 (1986)

    Article  Google Scholar 

  16. Hershenson, M.D., Boyd, S.P., Lee, T.H.: Optimal design of a CMOS op-amp via geometric programming. IEEE Trans. Comput. Aid. Des. 20, 1–21 (2001)

    Article  Google Scholar 

  17. Islam, S., Roy, T.K.: Fuzzy multi-item economic production quantity model under space constraint: a geometric programming approach. Appl. Math. Comput. 184, 326–335 (2007)

    Article  MathSciNet  Google Scholar 

  18. Jung, H., Klein, C.M.: Optimal inventory policies under decreasing cost functions via geometric programming. Eur. J. Oper. Res. 132, 628–642 (2001)

    Article  Google Scholar 

  19. Kim, D., Lee, W.J.: Optimal joint pricing and lot sizing with fixed and variable capacity. Eur. J. Oper. Res. 109, 212–227 (1998)

    Article  Google Scholar 

  20. Kortanek, K.O., No, H.: A second order affine scaling algorithm for the geometric programming dual with logarithmic barrier. Optimization 23, 303–322 (1992)

    Article  MathSciNet  Google Scholar 

  21. Kortanek, K.O., Xu, X., Ye, Y.: An infeasible interior-point algorithm for solving primal and dual geometric programs. Math. Program. 76, 155–181 (1997)

    Article  MathSciNet  Google Scholar 

  22. Lee, W.J.: Determining order quantity and selling price by geometric programming. Optimal solution, bounds, and sensitivity. Decis. Sci. 24, 76–87 (1993)

    Article  Google Scholar 

  23. Liu, B.: Uncertainty Theory, 4th edn. Springer, Berlin (2015)

    Book  Google Scholar 

  24. Liu, J., Peng, S., Lisser, A., Chen, Z.: Rectangular chance constrained geometric optimization. Optim. Eng. 21, 537–566 (2020)

    Article  MathSciNet  CAS  Google Scholar 

  25. Liu, S.T.: Geometric programming with fuzzy parameters in engineering optimization. Int. J. Approx. Reason. 46, 484–498 (2007)

    Article  Google Scholar 

  26. Liu, S.T.: Posynomial geometric programming with parametric uncertainty. Eur. J. Oper. Res. 168, 345–353 (2006)

    Article  MathSciNet  Google Scholar 

  27. Mahapatra, G.S., Mandal, T.K.: Posynomial parametric geometric programming with interval valued coefficient. J. Optim. Theory Appl. 154, 120–132 (2012)

    Article  MathSciNet  Google Scholar 

  28. Mandal, N.K., Roy, T.K.: A displayed inventory model with L-R fuzzy number. Fuzzy Optim. Decis. Mak. 5, 227–243 (2006)

    Article  MathSciNet  Google Scholar 

  29. Maranas, C.D., Floudas, C.A.: Global optimization in generalized geometric programming. Comput. Chem. Eng. 21, 351–369 (1997)

    Article  CAS  Google Scholar 

  30. Mondal, T., Ojha, A.K., Pani, S.: Solving geometric programming problems with triangular and trapezoidal uncertainty distributions. RAIRO-Oper. Res. 56, 2833–2851 (2022)

    Article  MathSciNet  Google Scholar 

  31. Passy, U., Wilde, D.J.: A geometric programming algorithm for solving chemical equilibrium problems. SIAM J. Appl. Math. 16, 363–373 (1968)

    Article  CAS  Google Scholar 

  32. Rajgopal, J.: An alternative approach to the refined duality theory of geometric programming. J. Math. Anal. Appl. 167, 266–288 (1992)

    Article  MathSciNet  Google Scholar 

  33. Rajgopal, J., Bricker, D.L.: Posynomial geometric programming as a special case of semi-infinite linear programming. J. Optim. Theory Appl. 66, 455–475 (1990)

    Article  MathSciNet  Google Scholar 

  34. Rajgopal, J., Bricker, D.L.: Solving posynomial geometric programming problems via generalized linear programming. Comput. Optim. Appl. 21, 95–109 (2002)

    Article  MathSciNet  Google Scholar 

  35. Roy, T.K., Maiti, M.: A fuzzy EOQ model with demand-dependent unit cost under limited storage capacity. Eur. J. Oper. Res. 99, 425–432 (1997)

    Article  Google Scholar 

  36. Ruckaert, M.J., Martens, X.M., Desarnauts, J.: Ethylene plant optimization by geometric programming. Comput. Chem. Eng. 2, 93–97 (1978)

    Article  Google Scholar 

  37. Scott, C.H., Jefferson, T.R.: Allocation of resources in project management. Int. J. Syst. Sci. 26, 413–420 (1995)

    Article  Google Scholar 

  38. Shiraz, R.K., Khodayifar, S., Pardalos, P.M.: Copula theory approach to stochastic geometric programming. J. Glob. Optim. 81, 435–468 (2021)

    Article  MathSciNet  Google Scholar 

  39. Shiraz, R.K., Tavana, M., Di Caprio, D., Fukuyama, H.: Solving geometric programming problems with normal, linear and zigzag uncertainty distributions. J. Optim. Theory Appl. 170, 243–265 (2016)

    Article  MathSciNet  Google Scholar 

  40. Shiraz, R.K., Tavana, M., Fukuyama, H., Di Caprio, D.: Fuzzy chance-constrained geometric programming: the possibility, necessity and credibility approaches. Oper. Res. Int. J. 17, 67–97 (2017)

    Article  Google Scholar 

  41. Shiraz, R.K., Fukuyama, H.: Integrating geometric programming with rough set theory. Oper. Res. Int. J. 18, 1–32 (2018)

    Article  Google Scholar 

  42. Sinha, S.B., Biswas, A., Biswal, M.P.: Geometric programming problems with negative degrees of difficulty. Eur. J. Oper. Res. 28, 101–103 (1987)

    Article  MathSciNet  Google Scholar 

  43. Wall, T.W., Greening, D., Woolsey, R.E.D.: OR practice-solving complex chemical equilibria using a geometric-programming based technique. Oper. Res. 34, 345–493 (1986)

    Article  Google Scholar 

  44. Worrall, B.M., HALL, M.A.: The analysis of an inventory control model using posynomial geometric programming. Int. J. Prod. Res. 20, 657–667 (1982)

    Article  Google Scholar 

  45. Yang, J.H., Cao, B.Y.: Monomial geometric programming with fuzzy relation equation constraints. Fuzzy Optim. Decis. Mak. 6, 337–349 (2007)

    Article  MathSciNet  Google Scholar 

  46. Yang, L., Liu, P., Li, S., Gao, Y., Ralescu, D.A.: Reduction methods of type-2 uncertain variables and their applications to solid transportation problem. Inf. Sci. 291, 204–237 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are extremely thankful to the editor and anonymous reviewers for their insightful comments and suggestions. The first author is thankful to CSIR for financial support of this work through file No: 09\1059(0027)\2019-EMR-I.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapas Mondal.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose. The authors declare that they have no conflict of interests.

Additional information

Communicated by Ana Luisa Custodio.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, T., Ojha, A.K. & Pani, S. Geometric Programming Problems with Triangular and Trapezoidal Twofold Uncertainty Distributions. J Optim Theory Appl 200, 978–1016 (2024). https://doi.org/10.1007/s10957-023-02347-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-023-02347-5

Keywords

Mathematics Subject Classification

Navigation