Skip to main content
Log in

Constraint Qualifications and Optimality Criteria for Nonsmooth Multiobjective Programming Problems on Hadamard Manifolds

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This article deals with a class of constrained nonsmooth multiobjective programming problems (NMOPP) in the setting of Hadamard manifolds. The generalized Guignard constraint qualification (GGCQ), Abadie constraint qualification (ACQ), and the generalized ACQ (GACQ) are introduced in the framework of Hadamard manifolds for NMOPP using the notion of Clarke subdifferentials. Subsequently, by employing GGCQ and geodesic quasiconvexity assumptions, we establish Karush–Kuhn–Tucker (abbreviated as, KKT)-type necessary criteria of Pareto efficiency for NMOPP. Moreover, we establish that ACQ and GACQ are sufficient criteria for satisfaction of GGCQ. Several nontrivial numerical examples are furnished in manifold settings to demonstrate the validity of the derived results. To the best of our knowledge, this is the first time that ACQ, GACQ, GGCQ, and KKT-type necessary criteria of Pareto efficiency for NMOPP have been studied in manifold setting using Clarke subdifferentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Absil, P.-A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton (2008)

    Google Scholar 

  2. Azagra, D., Ferrera, J., López-Mesas, F.: Nonsmooth analysis and Hamilton–Jacobi equations on Riemannian manifolds. J. Funct. Anal. 220, 304–361 (2005)

    MathSciNet  Google Scholar 

  3. Azagra, D., Ferrera, J.: Applications of proximal calculus to fixed point theory on Riemannian manifolds. Nonlinear Anal. 67, 154–174 (2007)

    MathSciNet  Google Scholar 

  4. Barani, A.: Generalized monotonicity and convexity for locally Lipschitz functions on Hadamard manifolds. Differ. Geom. Dyn. Syst. 15, 26–37 (2013)

    MathSciNet  Google Scholar 

  5. Barani, A.: On pseudoconvex functions in Riemannian manifolds. J. Finsler Geom. Appl. 2(2), 14–22 (2021)

    MathSciNet  Google Scholar 

  6. Bacák, M., Bergmann, R., Steidl, G., Weinmann, A.: A second order nonsmooth variational model for restoring manifold-valued images. SIAM J. Sci. Comput. 38, A567–A597 (2016)

    MathSciNet  Google Scholar 

  7. Bačák, M.: Convex Analysis and Optimization in Hadamard Spaces. De Gruyter Series in Nonlinear Analysis and Applications, vol. 22. De Gruyter, Berlin (2014)

    Google Scholar 

  8. Belkin, M., Niyogi, P.: Semi-supervised learning on Riemannian manifolds. Mach. Learn. 56(1), 209–239 (2004)

    Google Scholar 

  9. Bergmann, R., Herzog, R.: Intrinsic formulation of KKT conditions and constraint qualifications on smooth manifolds. SIAM J. Optim. 29(4), 2423–2444 (2019)

    MathSciNet  Google Scholar 

  10. Bergmann, R., Herzog, R., Ortiz López, J., Schiela, A.: First-and second-order analysis for optimization problems with manifold-valued constraints. J. Optim. Theory Appl. 195(2), 596–623 (2022)

    MathSciNet  Google Scholar 

  11. Boumal, N., Mishra, B., Absil, P.-A., Sepulchre, R.: Manopt, a Matlab toolbox for optimization on manifolds. J. Mach. Learn. Res. 15(1), 1455–1459 (2014)

    Google Scholar 

  12. Chen, S.-I., Fang, C.-J.: Vector variational inequality with pseudoconvexity on Hadamard manifolds. Optimization 65, 2067–2080 (2016)

    MathSciNet  Google Scholar 

  13. Chen, S.-I., Huang, N.-J., O’Regan, D.: Geodesic B-preinvex functions and multiobjective optimization problems on Riemannian manifolds. J. Appl. Math. 2014, Art. ID 524698, 12 pp. (2014)

    MathSciNet  Google Scholar 

  14. Chryssochoos, I., Vinter, R.B.: Optimal control problems on manifolds: a dynamic programming approach. J. Math. Anal. Appl. 287, 118–140 (2003)

    MathSciNet  Google Scholar 

  15. Dutta, J., Chandra, S.: Convexificators, generalized convexity and vector optimization. Optimization 53, 77–94 (2004)

    MathSciNet  Google Scholar 

  16. Farrokhiniya, M., Barani, A.: Limiting subdifferential calculus and perturbed distance function in Riemannian manifolds. J. Glob. Optim. 77, 661–685 (2020)

    MathSciNet  Google Scholar 

  17. Ferreira, O.P.: Proximal subgradient and a characterization of Lipschitz function on Riemannian manifolds. J. Math. Anal. Appl. 313, 587–597 (2006)

    MathSciNet  Google Scholar 

  18. Ferreira, O.P., Louzeiro, M.S., Prudente, L.: Gradient method for optimization on Riemannian manifolds with lower bounded curvature. SIAM J. Optim. 29(4), 2517–2541 (2019)

    MathSciNet  Google Scholar 

  19. Fletcher, P.T., Moeller, J., Phillips, J.M., Venkatasubramanian, S.: Horoball hulls and extents in positive definite space. In: Algorithms and Data Structures, pp. 386–398 (2011)

  20. Giorgi, G., Jimenez, B., Novo, V.: On constraint qualification in directionally differentiable multiobjective optimization problems. RAIRO-Oper. Res. 38, 255–274 (2004)

    MathSciNet  Google Scholar 

  21. Giorgi, G., Jimenez, B., Novo, V.: Strong Kuhn–Tucker conditions and constraint qualifications in locally Lipschitz multiobjective optimization problems. Top 17(2), 288–304 (2009)

    MathSciNet  Google Scholar 

  22. Golestani, M., Nobakhtian, S.: Nonsmooth multiobjective programming and constraint qualifications. Optimization 62(6), 783–795 (2013)

    MathSciNet  Google Scholar 

  23. Grohs, P., Hosseini, S.: \(\epsilon \)-subgradient algorithms for locally Lipschitz functions on Riemannian manifolds. Adv. Comput. Math. 42(2), 333–360 (2016)

    MathSciNet  Google Scholar 

  24. Gupta, R., Srivastava, M.: Constraint qualifications in nonsmooth multiobjective optimization problem. Filomat 31(3), 781–797 (2017)

    MathSciNet  Google Scholar 

  25. Hamdi, A., Mishra, S.K.: Decomposition methods based on augmented Lagrangians: a survey. In: Mishra, S.K. (ed.) Topics in Nonconvex Optimization. Springer Optimization and Its Applications, pp. 175–203. Springer, New York (2011)

    Google Scholar 

  26. Hosseini, S., Pouryayevali, M.R.: Generalized gradients and characterization of epi-Lipschitz sets in Riemannian manifolds. Nonlinear Anal. 74, 3884–3895 (2011)

    MathSciNet  Google Scholar 

  27. Jourani, A.: Constraint qualifications and Lagrange multipliers in nondifferentiable programming problems. J. Optim. Theory Appl. 81, 533–548 (1994)

    MathSciNet  Google Scholar 

  28. Karkhaneei, M.M., Mahdavi-Amiri, N.: Nonconvex weak sharp minima on Riemannian manifolds. J. Optim. Theory Appl. 183, 85–104 (2019)

    MathSciNet  Google Scholar 

  29. Kuhn, H.W., Tucker, A.W.: Nonlinear programming. In: Neyman, J. (ed.) Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, pp. 481–492. Berkeley (1950)

  30. Ledyaev, Y.S., Zhu, Q.J.: Nonsmooth analysis on smooth manifolds. Trans. Am. Math. Soc. 359, 3687–3732 (2007)

    MathSciNet  Google Scholar 

  31. Li, X.F.: Constraint qualifications in nonsmooth multiobjective optimization. J. Optim. Theory Appl. 106, 373–398 (2000)

    MathSciNet  Google Scholar 

  32. Lim, Y., Hiai, F., Lawson, J.: Nonhomogeneous Karcher equations with vector fields on positive definite matrices. Eur. J. Math. 7(3), 1291–1328 (2021)

    MathSciNet  Google Scholar 

  33. Maeda, T.: Constraint qualifications in multiobjective optimization problems: differentiable case. J. Optim. Theory Appl. 80(3), 483–500 (1994)

    MathSciNet  Google Scholar 

  34. Mangasarian, O.L.: Nonlinear Programming. SIAM Classics in Applied Mathematics, vol. 10. McGraw-Hill, New York (1969). Reprint Philadelphia (1994)

  35. Mehlitz, P.: Stationarity conditions and constraint qualifications for mathematical programs with switching constraints. Math. Program. 181(1), 149–186 (2020)

    MathSciNet  Google Scholar 

  36. Mishra, S.K.: Lagrange multipliers saddle points and scalarizations in composite multiobjective nonsmooth programming. Optimization 38(2), 93–105 (1996)

    MathSciNet  Google Scholar 

  37. Mishra, S.K., Mukherjee, R.N.: Generalized convex composite multiobjective nonsmooth programming and conditional proper efficiency. Optimization 34, 53–66 (1995)

    MathSciNet  Google Scholar 

  38. Mishra, S.K., Singh, V., Laha, V., Mohapatra, R.N.: On constraint qualifications for multiobjective optimization problems with vanishing constraints. In: Xu, H., Wang, S., Wu, S.Y. (eds.) Optimization Methods, Theory and Applications, pp. 95–135. Springer, Heidelberg (2015)

    Google Scholar 

  39. Mishra, S.K., Upadhyay, B.B.: Pseudolinear Functions and Optimization. Chapman and Hall/CRC, London (2019)

    Google Scholar 

  40. Mishra, S.K., Wang, S.Y., Lai, K.K.: Optimality and duality for multiple objective optimization under generalized type I univexity. J. Math. Anal. Appl. 303, 315–326 (2005)

    MathSciNet  Google Scholar 

  41. Preda, V., Chiescu, I.: On constraint qualification in multiobjective optimization problems: semidifferentiable case. J. Optim. Theory Appl. 100, 417–433 (1999)

    MathSciNet  Google Scholar 

  42. Papa Quiroz, E.A., Baygorrea Cusihuallpa, N., Maculan, N.: Inexact proximal point methods for multiobjective quasiconvex minimization on Hadamard manifolds. J. Optim. Theory Appl. 186(3), 879–898 (2020)

    MathSciNet  Google Scholar 

  43. Papa Quiroz, E.A., Quispe, E.M., Oliveira, P.R.: Steepest descent method with a generalized Armijo search for quasiconvex functions on Riemannian manifolds. J. Math. Anal. Appl. 341(1), 467–477 (2009)

    MathSciNet  Google Scholar 

  44. Papa Quiroz, E.A., Oliveira, P.R.: Proximal point methods for quasiconvex and convex functions with Bregman distances on Hadamard manifolds. J. Convex Anal. 16, 49–69 (2009)

    MathSciNet  Google Scholar 

  45. Papa Quiroz, E.A., Oliveira, P.R.: Full convergence of the proximal point method for quasiconvex functions on Hadamard manifolds. ESAIM Control Optim. Cal. Var. 18(2), 483–500 (2012)

    MathSciNet  Google Scholar 

  46. Pennec, X.: Manifold-valued image processing with SPD matrices. In: Pennec, X., Sommer, S., Fletcher, T. (eds.) Riemannian Geometric Statistics in Medical Image Analysis, pp. 75–134. Elsevier, Amsterdam (2020)

    Google Scholar 

  47. Rapcsák, T.: Smooth Nonlinear Optimization in \({\mathbb{R} }^n\). Springer, Berlin (2013)

    Google Scholar 

  48. Ruiz-Garzón, G., Osuna-Gómez, R., Rufián-Lizana, A., Hernández-Jiménez, B.: Optimality and duality on Riemannian manifolds. Taiwan J. Math. 22, 1245–1259 (2018)

    MathSciNet  Google Scholar 

  49. Ruiz-Garzón, G., Osuna-Gómez, R., Ruiz-Zapatero, J.: Necessary and sufficient optimality conditions for vector equilibrium problems on Hadamard manifolds. Symmetry 11, 1037 (2019)

    Google Scholar 

  50. Stein, O.: On constraint qualifications in nonsmooth optimization. J. Optim. Theory Appl. 121, 647–671 (2004)

    MathSciNet  Google Scholar 

  51. Trean, S., Upadhyay, B.B., Ghosh, A., Nonlaopon, K.: Optimality conditions for multiobjective mathematical programming problems with equilibrium constraints on Hadamard manifolds. Mathematics 10, 3516 (2022)

    Google Scholar 

  52. Tung, L.T., Tam, D.H.: Optimality conditions and duality for multiobjective semi-infinite programming on Hadamard manifolds. Bull. Iran. Math. Soc. 48, 2191–2219 (2022)

    MathSciNet  Google Scholar 

  53. Udrişte, C.: Convex Functions and Optimization Methods on Riemannian Manifolds. Springer, Berlin (2013)

    Google Scholar 

  54. Upadhyay, B.B., Ghosh, A.: On constraint qualifications for mathematical programming problems with vanishing constraints on Hadamard manifolds. J. Optim. Theory Appl. (2023). https://doi.org/10.1007/s10957-023-02207-2

    Article  MathSciNet  Google Scholar 

  55. Upadhyay, B.B., Ghosh, A., Mishra, P., Treanţă, S.: Optimality conditions and duality for multiobjective semi-infinite programming problems on Hadamard manifolds using generalized geodesic convexity. RAIRO Oper. Res. 56(4), 2037–2065 (2022)

    MathSciNet  Google Scholar 

  56. Upadhyay, B.B., Ghosh, A., Stancu-Minasian, I.M.: Second-order optimality conditions and duality for multiobjective semi-infinite programming problems on Hadamard manifolds. Asia Pac. J. Oper. Res. (2023). https://doi.org/10.1142/S0217595923500197

    Article  Google Scholar 

  57. Upadhyay, B.B., Ghosh, A., Treanţă, S.: Efficiency conditions and duality for multiobjective semi-infinite programming problems on Hadamard manifolds. Submitted in J. Glob. Optim. (2022)

  58. Upadhyay, B.B., Ghosh, A., Treanţă, S.: Optimality conditions and duality for nonsmooth multiobjective semi-infinite programming problems on Hadamard manifolds. Bull. Iran. Math. Soc. 49, 45 (2023). https://doi.org/10.1007/s41980-023-00791-7

    Article  MathSciNet  Google Scholar 

  59. Upadhyay, B.B., Treanţă, S., Mishra, P.: On Minty variational principle for nonsmooth multiobjective optimization problems on Hadamard manifolds. Optimization (2022). https://doi.org/10.1080/02331934.2022.2088369

    Article  Google Scholar 

  60. Yang, W.H., Zhang, L.-H., Song, R.: Optimality conditions for the nonlinear programming problems on Riemannian manifolds. Pac. J. Optim. 10, 415–434 (2014)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their careful reading of the manuscript and constructive suggestions, which have substantially improved the paper in its present form. The second author is supported by the Council of Scientific and Industrial Research (CSIR), New Delhi, India, through Grant Number 09/1023(0044)/2021-EMR-I.

Author information

Authors and Affiliations

Authors

Contributions

Every author contributed equally to the work.

Corresponding author

Correspondence to Savin Treanţă.

Ethics declarations

Conflict of interest

The authors declare that there is no actual or potential conflict of interest in relation to this article.

Additional information

Communicated by Gabriele Steidl.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Upadhyay, B.B., Ghosh, A. & Treanţă, S. Constraint Qualifications and Optimality Criteria for Nonsmooth Multiobjective Programming Problems on Hadamard Manifolds. J Optim Theory Appl 200, 794–819 (2024). https://doi.org/10.1007/s10957-023-02301-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-023-02301-5

Keywords

Mathematics Subject Classification

Navigation