Skip to main content
Log in

Lipschitz-Like Property for Linear Constraint Systems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we consider a linear constraint system with a set constraint. We investigate the Lipschitz-like property of such systems with an explicit set constraint under full perturbations (including the matrix perturbation) and derive some sufficient and necessary conditions for this property. We also make use of some other approaches like outer-subdifferentials and error bounds to characterize such a property. We later apply the obtained results to linear portfolio selection problems with different settings and obtain some sufficient conditions for the parametric feasible set mapping to enjoy the Lipschitz-like property with various stock selection constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubin, J.P.: Lipschitz behavior of solutions to convex minimization problems. Math. Oper. Res. 9(1), 87–111 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  2. Azé, D., Corvellec, J.N.: On the sensitivity analysis of Hoffman constants for systems of linear inequalities. SIAM J. Optim. 12(4), 913–927 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, Berlin (2013)

    MATH  Google Scholar 

  4. Borwein, J.M.: Stability and regular points of inequality systems. J. Optim. Theory Appl. 48(1), 9–52 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cai, X., Teo, K.L., Yang, X., Zhou, X.Y.: Portfolio optimization under a minimax rule. Manag. Sci. 46(7), 957–972 (2000)

    Article  MATH  Google Scholar 

  6. Cánovas, M.J., Dontchev, A.L., López, M.A., Parra, J.: Metric regularity of semi-infinite constraint systems. Math. Program. 104(2), 329–346 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cánovas, M.J., Kruger, A.Y., López, M.A., Parra, J., Théra, M.: Calmness modulus of linear semi-infinite programs. SIAM J. Optim. 24(1), 29–48 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cánovas, M.J., López, M.A., Parra, J., Toledo, F.J.: Calmness of the feasible set mapping for linear inequality systems. Set-Valued Var. Anal. 22(2), 375–389 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dontchev, A.L., Rockafellar, R.T.: Implicit Functions and Solution Mappings. Springer, New York (2009)

    Book  MATH  Google Scholar 

  10. Gfrerer, H., Mordukhovich, B.S.: Robinson stability of parametric constraint systems via variational analysis. SIAM J. Optim. 27(1), 438–465 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Goberna, M.A., López, M.A.: Linear Semi-Infinite Optimization. Wiley, New York (1998)

    MATH  Google Scholar 

  12. Hoffman, A.J.: On approximate solutions of systems of linear inequalities. J. Res. Natl. Bureau Stand. (1952). https://doi.org/10.6028/JRES.049.027

    Article  MathSciNet  Google Scholar 

  13. Huyen, D.T.K., Yen, N.D.: Coderivatives and the solution map of a linear constraint system. SIAM J. Optim. 26(2), 986–1007 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ioffe, A.D.: Variational analysis of Regular Mappings: Theory and Applications. Springer, Berlin (2017)

    Book  MATH  Google Scholar 

  15. Ioffe, A.D., Outrata, J.V.: On metric and calmness qualification conditions in subdifferential calculus. Set-Valued Anal. 16(2–3), 199–227 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jongen, H.T., Rückmann, J.J., Weber, G.W.: One-parametric semi-infinite optimization: on the stability of the feasible set. SIAM J. Optim. 4(3), 637–648 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Klatte, D., Kummer, B.: Nonsmooth Equations in Optimization. Kluwer, New York (2002)

    MATH  Google Scholar 

  18. Lee, G.M., Yen, N.D.: Coderivatives of a Karush–Kuhn–Tucker point set map and applications. Nonlinear Anal.: Theory Methods Appl. 95, 191–201 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Levy, A.B., Mordukhovich, B.S.: Coderivatives in parametric optimization. Math. Program. 99(2), 311–327 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, C., Ng, K.F.: Quantitative analysis for perturbed abstract inequality systems in Banach spaces. SIAM J. Optim. 28(4), 2872–2901 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, M., Li, S.: Robinson metric regularity of parametric variational systems. Nonlinear Anal.: Theory Methods Appl. 74(6), 2262–2271 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Luo, Z.Q., Tseng, P.: Perturbation analysis of a condition number for linear systems. SIAM J. Matrix Anal. Appl. 15(2), 636–660 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  23. Meng, K., Yang, H., Yang, X., Yu, C.K.W.: Portfolio optimization under a minimax rule revisited. Optimization 71(4), 877–905 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mordukhovich, B.S.: Sensitivity analysis in nonsmooth optimization. Theor. Aspects Ind. Design 58, 32–46 (1992)

    MathSciNet  MATH  Google Scholar 

  25. Mordukhovich, B.S.: Complete characterization of openness, metric regularity, and Lipschitzian properties of multifunctions. Trans. Am. Math. Soc. 340(1), 1–35 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mordukhovich, B.S.: Stability theory for parametric generalized equations and variational inequalities via nonsmooth analysis. Trans. Am. Math. Soc. 343(2), 609–657 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation I. Springer, Berlin (2006)

    Book  Google Scholar 

  28. Peña, J.F., Vera, J.C., Zuluaga, L.F.: New characterizations of Hoffman constants for systems of linear constraints. Math. Program. 187(1), 79–109 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  29. Robinson, S.M.: Stability theory for systems of inequalities. Part I: linear systems. SIAM J. Numer. Anal. 12(5), 754–769 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  30. Robinson, S.M.: Stability theory for systems of inequalities, Part II: differentiable nonlinear systems. SIAM J. Numer. Anal. 13(4), 497–513 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  31. Rockafellar, R.T., Wets, R.J.B.: Variational Analysis. Springer, Berlin (2009)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous reviewers for their careful reading and valuable suggestions. The authors would like to thank Dr. Li Minghua for his useful discussions during the development of this article. The second author was partly supported by a project from the Research Grants Council of Hong Kong (Ref No: 15216518) and a PolyU internal grant (UAF5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenfang Yao.

Additional information

Communicated by René Henrion.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, W., Yang, X. Lipschitz-Like Property for Linear Constraint Systems. J Optim Theory Appl 199, 1281–1296 (2023). https://doi.org/10.1007/s10957-023-02300-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-023-02300-6

Keywords

Mathematics Subject Classification

Navigation