Skip to main content
Log in

A Version of Bundle Trust Region Method with Linear Programming

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We present a general version of bundle trust region method for minimizing convex functions. The trust region is constructed by generic \(p\)-norm with \(p\in [1,+\infty ]\). In each iteration the algorithm solves a subproblem with a constraint involving \(p\)-norm. We show the convergence of the generic bundle trust region algorithm. In implementation, the infinity norm is chosen so that a linear programming subproblem is solved in each iteration. Preliminary numerical experiments show that our algorithm performs comparably with the traditional bundle trust region method and has advantages in solving large-scale problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1

Similar content being viewed by others

Data Availability Statement

The codes of the algorithm developed in this study are available in the Bitbucket repository https://bitbucket.org/shuai_liu_leo/bundletrustregionlp/src/master/. The other datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

Notes

  1. https://cs.nyu.edu/~overton/software/hanso/

  2. https://bitbucket.org/shuai_liu_leo/bundletrustregionlp/src/master/

References

  1. van Ackooij, W., Frangioni, A., de Oliveira, W.: Inexact stabilized benders’ decomposition approaches with application to chance-constrained problems with finite support. Comput. Optim. Appl. 65(3), 637–669 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Andreani, R., Martinez, J.M., Schuverdt, M.L.: On the relation between constant positive linear dependence condition and quasinormality constraint qualification. J. Optim. Theory Appl. 125(2), 473–483 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Astorino, A., Frangioni, A., Gaudioso, M., Gorgone, E.: Piecewise-quadratic approximations in convex numerical optimization. SIAM J. Optim. 21(4), 1418–1438 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bagirov, A., Karmitsa, N., Mäkelä, M.M.: Introduction to nonsmooth optimization: Theory, Practice and Software, vol. 12. Springer (2014)

  5. Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming: Theory and Algorithms, 3rd edn. John Wiley & Sons, Hoboken, NJ (2006)

    Book  MATH  Google Scholar 

  6. Bonnans, J.F., Gilbert, J.C., Lemaréchal, C., Sagastizábal, C.A.: Numerical Optimization, 2 edn. Universitext. Springer Berlin, Heidelberg (2006). https://doi.org/10.1007/978-3-540-35447-5

  7. Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust Region Methods. MOS/SIAM Series on Optimization. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA; Mathematical Optimization Society (MOS), Philadelphia, PA (2000). https://doi.org/10.1137/1.9780898719857

  8. Hare, W., Sagastizábal, C.: A redistributed proximal bundle method for nonconvex optimization. SIAM J. Optim. 20(5), 2442–2473 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms II, Grundlehren der mathematischen Wissenschaften, vol. 306. Springer Berlin, Heidelberg (1993). https://doi.org/10.1007/978-3-662-06409-2

  10. Kiwiel, K.: Methods of Descent for Nondifferentiable Optimization. Lecture Notes in Mathematics, vol. 1133. Springer, Berlin, Heidelberg (1985)

  11. Kiwiel, K.C.: An aggregate subgradient method for nonsmooth convex minimization. Mathematical Programming 27(3), 320–341. https://doi.org/10.1007/BF02591907

  12. Kiwiel, K.C.: Efficiency of proximal bundle methods. J. Optim Theory and Appl 104(3), 589–603. https://doi.org/10.1023/A:1004689609425

  13. Lemaréchal, C.: An extension of davidon methods to non differentiable problems. In: M. Balinski, P. Wolfe (eds.) Nondifferentiable Optimization, Mathematical Programming Studies, vol. 3, pp. 95–109. Springer Berlin, Heidelberg (1975). https://doi.org/10.1007/BFb0120700

  14. Lewis, A.S., Overton, M.L.: Nonsmooth optimization via quasi-newton methods. Math. Program. 141(1), 135–163. https://doi.org/10.1007/s10107-012-0514-2

  15. Linderoth, J., Wright, S.: Decomposition algorithms for stochastic programming on a computational grid. Comput. Optim. Appl. 24(2–3), 207–250 (2003). https://doi.org/10.1023/A:1021858008222

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu, S.: A simple version of bundle method with linear programming. Comput. Optim. Appl. 72(2), 391–412 (2019). https://doi.org/10.1007/s10589-018-0048-5

    Article  MathSciNet  MATH  Google Scholar 

  17. Lukšan, L., Vlček, J.: A bundle-Newton method for nonsmooth unconstrained minimization. Math. Program. 83(1), 373–391. https://doi.org/10.1007/BF02680566

  18. Lukšan, L., Vlček, J.: Test problems for nonsmooth unconstrained and linearly constrained optimization. techreport 798, Institute of Computer Science, Academy of Sciences of the Czech Republic (2000)

  19. Noll, D., Prot, O., Rondepierre, A.: A proximity control algorithm to minimize nonsmooth and nonconvex functions. Pacific J. Optim. 4(3), 569–602 (2008)

    MathSciNet  MATH  Google Scholar 

  20. Rockafellar, R.T., Wets, R.J.B.: Variational Analysis, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 317. Springer Berlin, Heidelberg (1998). https://doi.org/10.1007/978-3-642-02431-3

  21. Ruszczyński, A.P.: Nonlinear Optimization. Princeton University Press, Princeton, NJ (2006)

    Book  MATH  Google Scholar 

  22. Sagastizábal, C., Solodov, M.: An infeasible bundle method for nonsmooth convex constrained optimization without a penalty function or a filter. SIAM J. Optim. 16(1), 146–169 (2005). https://doi.org/10.1137/040603875

    Article  MathSciNet  MATH  Google Scholar 

  23. Schramm, H., Zowe, J.: A version of the bundle idea for minimizing a nonsmooth function: conceptual idea, convergence analysis, numerical results. SIAM J. Optim. 2(1), 121–152 (1992). https://doi.org/10.1137/0802008

    Article  MathSciNet  MATH  Google Scholar 

  24. Solodov, M.V.: A bundle method for a class of bilevel nonsmooth convex minimization problems. SIAM J. Optim. 18(1), 242–259 (2007). https://doi.org/10.1137/050647566

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuai Liu.

Additional information

Communicated by Shoham Sabach.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research of the first author was supported by the National Natural Science Foundation of China (Grant No. 12001208). The research of the second author was supported by the Australian Research Council (Grant No. DP120100567).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Eberhard, A.C. & Luo, Y. A Version of Bundle Trust Region Method with Linear Programming. J Optim Theory Appl 199, 639–662 (2023). https://doi.org/10.1007/s10957-023-02293-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-023-02293-2

Keywords

Mathematics Subject Classification

Navigation